This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251684 #7 Aug 19 2024 15:06:01 %S A251684 1,2,5,16,69,426,3947,55612,1177747,36816650,1676270109,110202314208, %T A251684 10408422663015,1407329003121294,271801891072128621, %U A251684 74846096423770137324,29351301902680241116593,16374214768286861089202358,12985582377076992552497257703,14629438237685095017820000611400 %N A251684 G.f.: exp( Sum_{n>=1} A047863(n)*x^n/n ), where A047863(n) = Sum_{k=0..n} binomial(n, k) * (2^k)^(n-k). %C A251684 Logarithmic derivative yields A047863, the number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa. %e A251684 G.f.: A(x) = 1 + 2*x + 5*x^2 + 16*x^3 + 69*x^4 + 426*x^5 + 3947*x^6 +... %e A251684 where the logarithmic derivative yields A047863: %e A251684 A'(x)/A(x) = 2 + 6*x + 26*x^2 + 162*x^3 + 1442*x^4 + 18306*x^5 + 330626*x^6 + 8488962*x^7 + 309465602*x^8 +...+ A047863(n+1)*x^n +... %o A251684 (PARI) {A047863(n) = sum(k=0, n, binomial(n, k) * (2^k)^(n-k) )} %o A251684 {a(n)=local(A);A=exp(sum(k=1,n+1, A047863(k)*x^k/k) +x*O(x^n)); polcoeff(A,n)} %o A251684 for(n=0, 20, print1(a(n), ", ")) %Y A251684 Cf. A047863. %K A251684 nonn %O A251684 0,2 %A A251684 _Paul D. Hanna_, Feb 14 2015