cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251690 G.f. A(x) satisfies the condition that G(A(x)) is a power series in x consisting entirely of positive integer coefficients such that G(A(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Table of values

n a(n)
1 1
2 -1
3 -2
4 -2
5 0
6 -1
7 0
8 -3
9 0
10 -3
11 -3
12 0
13 -3
14 -2
15 -3
16 -1
17 -2
18 0
19 -1
20 -2
21 0
22 0
23 -2
24 0
25 0
26 0
27 -2
28 0
29 -3
30 0
31 -2
32 0
33 -1
34 0
35 -3
36 -2
37 -1
38 -1
39 -3
40 -1
41 0
42 -2
43 -2
44 -3
45 -1
46 -3
47 -1
48 -1
49 0
50 0
51 -1
52 -1
53 -3
54 -3
55 -1
56 0
57 -1
58 0
59 -2
60 0
61 -3
62 -3
63 -3
64 -2
65 -1
66 -2
67 -1
68 -2
69 -2
70 -2
71 -3
72 -1
73 -3
74 -1
75 -3
76 -1
77 0
78 -2
79 -2
80 -2
81 -1
82 -1
83 -2
84 -2
85 0
86 -3
87 -3
88 -2
89 -3
90 -1
91 -3
92 -2
93 0
94 0
95 0
96 -2
97 -2
98 -2
99 -2
100 -3
101 -3
102 0
103 -2
104 0
105 -3
106 -1
107 0
108 -2
109 -3
110 -1
111 -3
112 0
113 -1
114 0
115 -2
116 -1
117 -1
118 -3
119 -3
120 -1
121 -3
122 -3
123 0
124 -3
125 -2
126 -3
127 -2

List of values

[1, -1, -2, -2, 0, -1, 0, -3, 0, -3, -3, 0, -3, -2, -3, -1, -2, 0, -1, -2, 0, 0, -2, 0, 0, 0, -2, 0, -3, 0, -2, 0, -1, 0, -3, -2, -1, -1, -3, -1, 0, -2, -2, -3, -1, -3, -1, -1, 0, 0, -1, -1, -3, -3, -1, 0, -1, 0, -2, 0, -3, -3, -3, -2, -1, -2, -1, -2, -2, -2, -3, -1, -3, -1, -3, -1, 0, -2, -2, -2, -1, -1, -2, -2, 0, -3, -3, -2, -3, -1, -3, -2, 0, 0, 0, -2, -2, -2, -2, -3, -3, 0, -2, 0, -3, -1, 0, -2, -3, -1, -3, 0, -1, 0, -2, -1, -1, -3, -3, -1, -3, -3, 0, -3, -2, -3, -2]