cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251734 Decimal expansion of the absolute value of zeta(1/3).

This page as a plain text file.
%I A251734 #15 Mar 19 2024 08:02:40
%S A251734 9,7,3,3,6,0,2,4,8,3,5,0,7,8,2,7,1,5,4,6,8,8,8,6,8,6,2,4,4,7,8,9,6,5,
%T A251734 7,0,7,7,2,8,2,9,6,3,1,7,4,3,0,5,3,3,3,9,9,4,5,3,5,8,1,4,4,6,2,1,0,8,
%U A251734 5,1,8,2,8,1,3,3,9
%N A251734 Decimal expansion of the absolute value of zeta(1/3).
%H A251734 Wikipedia, <a href="http://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann Zeta Function</a>.
%H A251734 <a href="/wiki/Index_to_constants#Start_of_section_Z">Index entries for constants related to Zeta</a>
%F A251734 Lim_{k->infinity} (3/2*k^(2/3) - Sum_{i=1..k} i^(-1/3)). - _Jinyuan Wang_, Jun 20 2020
%e A251734 zeta(1/3) = -0.97336024835078271546888....
%p A251734 Zeta(1/3) ; evalf(%) ;
%t A251734 RealDigits[Zeta[1/3], 10, 120][[1]] (* _Amiram Eldar_, May 31 2023 *)
%o A251734 (PARI) -zeta(1/3) \\ _Jinyuan Wang_, Jun 20 2020
%Y A251734 Cf. A002117, A013661, A059750.
%K A251734 nonn,cons
%O A251734 0,1
%A A251734 _R. J. Mathar_, Dec 07 2014