cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251739 Smallest k such that n * sum(i=0..k, binomial(k,i) mod (n-1) ) <= 2^n.

This page as a plain text file.
%I A251739 #16 Dec 14 2014 15:09:49
%S A251739 1,4,3,6,5,8,7,8,9,10,10,9,10,10,10,11,11,11,12,11,12,11,11,12,13,12,
%T A251739 11,13,12,13,13,13,12,13,13,14,13,14,13,14,14,14,14,14,14,15,15,15,14,
%U A251739 14,15,14,15,15,15,15,16,15
%N A251739 Smallest k such that n * sum(i=0..k, binomial(k,i) mod (n-1) ) <= 2^n.
%C A251739 Aside from the third value, the sequence is the same as A251738.
%e A251739 For n = 3,
%e A251739 3 * sum(i=0..1, binomial(1,i) mod 2) = 3 * (1 + 1) = 6 > 2^1,
%e A251739 3 * sum(i=0..2, binomial(2,i) mod 2) = 3 * (1 + 0 + 1) = 6 > 2^2,
%e A251739 3 * sum(i=0..3, binomial(3,i) mod 2) = 3 * (1 + 1 + 1 + 1) = 12 > 2^3,
%e A251739 3 * sum(i=0..4, binomial(4,i) mod 2) = 3 * (1 + 0 + 0 + 0 + 1) = 6 <= 2^4,
%e A251739 so A251739(3) = 4.
%Y A251739 Cf. A251738.
%K A251739 nonn
%O A251739 2,2
%A A251739 _Jens Voß_, Dec 07 2014