This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251739 #16 Dec 14 2014 15:09:49 %S A251739 1,4,3,6,5,8,7,8,9,10,10,9,10,10,10,11,11,11,12,11,12,11,11,12,13,12, %T A251739 11,13,12,13,13,13,12,13,13,14,13,14,13,14,14,14,14,14,14,15,15,15,14, %U A251739 14,15,14,15,15,15,15,16,15 %N A251739 Smallest k such that n * sum(i=0..k, binomial(k,i) mod (n-1) ) <= 2^n. %C A251739 Aside from the third value, the sequence is the same as A251738. %e A251739 For n = 3, %e A251739 3 * sum(i=0..1, binomial(1,i) mod 2) = 3 * (1 + 1) = 6 > 2^1, %e A251739 3 * sum(i=0..2, binomial(2,i) mod 2) = 3 * (1 + 0 + 1) = 6 > 2^2, %e A251739 3 * sum(i=0..3, binomial(3,i) mod 2) = 3 * (1 + 1 + 1 + 1) = 12 > 2^3, %e A251739 3 * sum(i=0..4, binomial(4,i) mod 2) = 3 * (1 + 0 + 0 + 0 + 1) = 6 <= 2^4, %e A251739 so A251739(3) = 4. %Y A251739 Cf. A251738. %K A251739 nonn %O A251739 2,2 %A A251739 _Jens Voß_, Dec 07 2014