A251753 n!/pp, where pp is the largest perfect power (A001597) which divides n!.
1, 1, 2, 6, 3, 15, 5, 35, 70, 70, 7, 77, 231, 3003, 858, 1430, 1430, 24310, 12155, 230945, 46189, 230945, 176358, 4056234, 676039, 676039, 104006, 312018, 44574, 1292646, 1077205, 33393355, 66786710, 2203961430, 64822395, 90751353, 90751353, 3357800061, 353452638, 1531628098, 3829070245, 156991880045
Offset: 0
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; f[n_] := Block[{d = Divisors[n!], k = 1}, While[ ! perfectPowerQ[ d[[-k]]], k++]; n!/d[[-k]]]; Array[f, 41, 0] (* or *) f[n_] := Block[{fi = FactorInteger[n!]}, n!/Times @@ (#1[[1]] ^ (2 Quotient[#1[[2]],2])&) /@ fi]; f[4] = 3; f[5] = 15; f[21] = 230945; Array[f, 40]
Formula
If p is prime, then a(p) = p*a(p-1).
a(n) = n! / A090630(n). - Joerg Arndt, Dec 08 2014