cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251753 n!/pp, where pp is the largest perfect power (A001597) which divides n!.

Original entry on oeis.org

1, 1, 2, 6, 3, 15, 5, 35, 70, 70, 7, 77, 231, 3003, 858, 1430, 1430, 24310, 12155, 230945, 46189, 230945, 176358, 4056234, 676039, 676039, 104006, 312018, 44574, 1292646, 1077205, 33393355, 66786710, 2203961430, 64822395, 90751353, 90751353, 3357800061, 353452638, 1531628098, 3829070245, 156991880045
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2014

Keywords

Crossrefs

Programs

  • Mathematica
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; f[n_] := Block[{d = Divisors[n!], k = 1},  While[ ! perfectPowerQ[ d[[-k]]], k++]; n!/d[[-k]]]; Array[f, 41, 0] (* or *)
    f[n_] := Block[{fi = FactorInteger[n!]}, n!/Times @@ (#1[[1]] ^ (2 Quotient[#1[[2]],2])&) /@ fi]; f[4] = 3; f[5] = 15; f[21] = 230945; Array[f, 40]

Formula

If p is prime, then a(p) = p*a(p-1).
a(n) = n! / A090630(n). - Joerg Arndt, Dec 08 2014