A251755 Digital root of n + n^2.
0, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3, 6, 2, 9, 9, 2, 6, 3, 2, 3
Offset: 0
Examples
For a(7) = 2 because 7+7^2 = 56, and 5+6 = 11, yielding result of digital root of 2 (1+1). For a(-3) = 6 because -3+(-3)^2 = -6, with digital root of 6.
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
a251755[n_Integer] := Module[{f}, f[x_] := Last@NestWhileList[Plus @@ IntegerDigits[#] &, x, # > 9 &]; f /@ Table[i + i^2, {i, 0, n}]]; a251755[60] (* Michael De Vlieger, Dec 17 2014 *)
-
PARI
DR(n)=s=sumdigits(n);while(s>9,s=sumdigits(s));s for(n=0,100,print1(DR(abs(n+n^2)),", ")) \\ Derek Orr, Dec 30 2014
Comments