cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251781 Numbers whose square is the sum of two distinct positive cubes.

This page as a plain text file.
%I A251781 #34 Mar 24 2021 15:52:29
%S A251781 3,24,81,98,168,192,228,312,375,525,588,648,671,784,847,1014,1029,
%T A251781 1183,1225,1261,1323,1344,1536,1824,2187,2496,2646,2888,3000,3993,
%U A251781 4200,4225,4536,4563,4644,4704,5184,5368,6156,6272,6292,6371,6591,6696,6776,6877,8112
%N A251781 Numbers whose square is the sum of two distinct positive cubes.
%C A251781 This list contains A117642 (if n=3*k^3, then n^2 = 9*k^6 = 8*k^6 + k^6 = (2*k^2)^3 + (k^2)^3). (Old comment rewritten as suggested by _Michel Marcus_, Dec 10 2014.)
%C A251781 Subsequence of A050801 and A217248. - _Wolfdieter Lang_, Jan 04 2015
%H A251781 Daniel Arribas, <a href="/A251781/b251781.txt">Table of n, a(n) for n = 1..575</a>
%e A251781 3^2 = 1^3 + 2^3; 24^2 = 4^3 + 8^3.
%o A251781 (Sage)
%o A251781 L = []
%o A251781 for k in range(1,10^3):
%o A251781     for l in range(k + 1,10^3):
%o A251781         if is_square(k**3+l**3):
%o A251781             L.append(sqrt(k**3+l**3))
%o A251781 (Python)
%o A251781 def aupto(limit):
%o A251781   c = [i**3 for i in range(1, int(limit**(2/3))+2) if i**3 <= limit**2]
%o A251781   cc = [c1 + c2 for i, c1 in enumerate(c) for c2 in c[i+1:]]
%o A251781   return sorted([i for i in range(1, limit+1) if i*i in cc])
%o A251781 print(aupto(8122)) # _Michael S. Branicky_, Mar 24 2021
%Y A251781 Cf. A024670, A117642, A050801, A217248, A099426 (coprime positive cubes).
%K A251781 nonn
%O A251781 1,1
%A A251781 _Daniel Arribas_, Dec 08 2014