This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251781 #34 Mar 24 2021 15:52:29 %S A251781 3,24,81,98,168,192,228,312,375,525,588,648,671,784,847,1014,1029, %T A251781 1183,1225,1261,1323,1344,1536,1824,2187,2496,2646,2888,3000,3993, %U A251781 4200,4225,4536,4563,4644,4704,5184,5368,6156,6272,6292,6371,6591,6696,6776,6877,8112 %N A251781 Numbers whose square is the sum of two distinct positive cubes. %C A251781 This list contains A117642 (if n=3*k^3, then n^2 = 9*k^6 = 8*k^6 + k^6 = (2*k^2)^3 + (k^2)^3). (Old comment rewritten as suggested by _Michel Marcus_, Dec 10 2014.) %C A251781 Subsequence of A050801 and A217248. - _Wolfdieter Lang_, Jan 04 2015 %H A251781 Daniel Arribas, <a href="/A251781/b251781.txt">Table of n, a(n) for n = 1..575</a> %e A251781 3^2 = 1^3 + 2^3; 24^2 = 4^3 + 8^3. %o A251781 (Sage) %o A251781 L = [] %o A251781 for k in range(1,10^3): %o A251781 for l in range(k + 1,10^3): %o A251781 if is_square(k**3+l**3): %o A251781 L.append(sqrt(k**3+l**3)) %o A251781 (Python) %o A251781 def aupto(limit): %o A251781 c = [i**3 for i in range(1, int(limit**(2/3))+2) if i**3 <= limit**2] %o A251781 cc = [c1 + c2 for i, c1 in enumerate(c) for c2 in c[i+1:]] %o A251781 return sorted([i for i in range(1, limit+1) if i*i in cc]) %o A251781 print(aupto(8122)) # _Michael S. Branicky_, Mar 24 2021 %Y A251781 Cf. A024670, A117642, A050801, A217248, A099426 (coprime positive cubes). %K A251781 nonn %O A251781 1,1 %A A251781 _Daniel Arribas_, Dec 08 2014