A251792 Decimal expansion of a constant related to A251702.
1, 1, 5, 4, 6, 7, 9, 6, 2, 7, 9, 6, 0, 5, 8, 3, 7, 8, 8, 8, 3, 8, 2, 8, 0, 8, 6, 2, 9, 5, 7, 0, 9, 4, 4, 0, 5, 2, 3, 2, 0, 5, 5, 6, 4, 1, 3, 0, 0, 0, 5, 9, 3, 1, 4, 2, 7, 9, 8, 4, 5, 3, 0, 2, 2, 3, 8, 5, 7, 7, 9, 1, 0, 4, 1, 1, 6, 4, 1, 9, 2, 5, 7, 9, 7, 3, 6, 8, 9, 1, 4, 9, 5, 4, 6, 1, 2, 6, 9, 6, 2, 7, 5, 3, 3
Offset: 1
Examples
1.1546796279605837888382808629570944052320556413000593142798453022385779...
Programs
-
Magma
nMax:=160; nExactMax:=20; DP:=100; R:=RealField(DP); SetDefaultRealField(R); logA:=[Log(5.0)]; for n in [2..nMax] do logAprev:=logA[n-1]; if n le nExactMax then Aprev:=Exp(logAprev); logA[n]:=logAprev + Log(Aprev-1) + Log(Aprev-2) - Log(6); else logA[n]:=3*logAprev - Log(6); end if; t:=Exp((1/3^n)*logA[n]); n, ChangePrecision(t,72); end for; // Jon E. Schoenfield, Dec 09 2014
-
Mathematica
exact = 20; terms = 200; b = ConstantArray[0, terms]; b[[1]] = N[Log[5], 100]; Do[b[[n]] = b[[n - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 2]] - Log[6], {n, 2, terms}]; Do[Print[Exp[b[[n]]/3^n]], {n, 1, Length[b]}] (* after Jon E. Schoenfield *)
Formula
Equals lim_{n->infinity} A251702(n)^(1/3^n).