cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251792 Decimal expansion of a constant related to A251702.

Original entry on oeis.org

1, 1, 5, 4, 6, 7, 9, 6, 2, 7, 9, 6, 0, 5, 8, 3, 7, 8, 8, 8, 3, 8, 2, 8, 0, 8, 6, 2, 9, 5, 7, 0, 9, 4, 4, 0, 5, 2, 3, 2, 0, 5, 5, 6, 4, 1, 3, 0, 0, 0, 5, 9, 3, 1, 4, 2, 7, 9, 8, 4, 5, 3, 0, 2, 2, 3, 8, 5, 7, 7, 9, 1, 0, 4, 1, 1, 6, 4, 1, 9, 2, 5, 7, 9, 7, 3, 6, 8, 9, 1, 4, 9, 5, 4, 6, 1, 2, 6, 9, 6, 2, 7, 5, 3, 3
Offset: 1

Views

Author

Keywords

Examples

			1.1546796279605837888382808629570944052320556413000593142798453022385779...
		

Crossrefs

Programs

  • Magma
    nMax:=160; nExactMax:=20; DP:=100; R:=RealField(DP); SetDefaultRealField(R); logA:=[Log(5.0)]; for n in [2..nMax] do logAprev:=logA[n-1]; if n le nExactMax then Aprev:=Exp(logAprev); logA[n]:=logAprev + Log(Aprev-1) + Log(Aprev-2) - Log(6); else logA[n]:=3*logAprev - Log(6); end if; t:=Exp((1/3^n)*logA[n]); n, ChangePrecision(t,72); end for; // Jon E. Schoenfield, Dec 09 2014
  • Mathematica
    exact = 20; terms = 200; b = ConstantArray[0, terms]; b[[1]] = N[Log[5], 100]; Do[b[[n]] = b[[n - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 1]] + If[n > exact, b[[n - 1]], Log[Exp[b[[n - 1]]] - 2]] - Log[6], {n, 2, terms}]; Do[Print[Exp[b[[n]]/3^n]], {n, 1, Length[b]}] (* after Jon E. Schoenfield *)

Formula

Equals lim_{n->infinity} A251702(n)^(1/3^n).