cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251861 Number of non-palindromic words (length n>0) over the alphabet of 26 letters.

Original entry on oeis.org

0, 650, 16900, 456300, 11863800, 308898200, 8031353200, 208826607600, 5429491797600, 141167083772000, 3670344178072000, 95428956352766400, 2481152865171926400, 64509974695265340800, 1677259342076898860800, 43608742899220046995200, 1133827315379721221875200, 29479510200008489360729600, 766467265200220723378969600, 19928148895209267985244544000
Offset: 1

Views

Author

Mikk Heidemaa, Dec 10 2014

Keywords

Comments

Example: the acronyms 'OEIS' and 'SIEO' are two distinct non-palindromic words of length 4 among all possible such 456300 words (over 26 letters of the Latin alphabet).

Examples

			For n=2, the a(2)=650 solutions are {ab,ac,...,az,...,yz}, but not, e.g., 'aa' or 'zz'.
		

Crossrefs

Analogs for other numbers of elements: (1) A000004, (2) A233411, (3) A242278, (4) A242026, (5) A240437.
Cf. A056450.

Programs

  • Maple
    seq(26^n - 26^ceil(n/2), n = 1 .. 50); # Robert Israel, Dec 11 2014
  • Mathematica
    f[n_, b_] := b^n - b^Ceiling[n/2]; Array[ f[#, 26] &, 50] (* Robert G. Wilson v, Dec 10 2014 *)
    Table[2^(n/2-1)*13^(n/2)*((-1)^n*(Sqrt[26]-1)-Sqrt[26]-1)+26^n, {n, 50}]
  • PARI
    a(n)=26^n-26^ceil(n/2) \\ Charles R Greathouse IV, Dec 10 2014

Formula

a(n) = 2^(n/2-1)*13^(n/2)*((-1)^n*(sqrt(26)-1)-sqrt(26)-1)+26^n.
a(n) = 26^n - 26^ceiling(n/2).
G.f.: 650*x^2/((1 - 26*x)*(1 - 26*x^2)).
a(n+3) = 26*a(n+2) + 26*a(n+1) - 676*a(n). - Robert Israel, Dec 11 2014