This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A251865 #50 Jun 01 2015 18:24:26 %S A251865 0,1,2,3,2,3,5,3,5,3,5,7,2,5,3,7,2,6,7,8,5,7,11,2,6,7,11,3,5,2,7,8,13, %T A251865 3,5,11,13,3,5,6,7,10,11,12,14,5,11,2,3,10,13,14,15,3,7,13,17,2,5,10, %U A251865 11,17,19,7,13,17,19,5,7,10,11,14,15,17,19,20,21,5,7,11,13,17,19,23,2,3,8,12,13,17,22,23 %N A251865 Irregular triangle read by rows in which row n lists the maximal-order elements (<n) mod n. %C A251865 Conjecture: Triangle contains all nonsquare numbers infinitely many times. %C A251865 The orders of the numbers in n-th row mod n are equal to A002322(n). %C A251865 First and last terms of the n-th row are A111076(n) and A247176(n). %C A251865 Length of the n-th row is A111725(n). %C A251865 The n-th row is the same as A046147 for n with primitive roots. %H A251865 Eric Chen, <a href="/A251865/b251865.txt">First 160 rows of triangle, flattened</a> %H A251865 Eric Chen, <a href="/A251865/a251865.txt">First 1000 rows of triangle</a> %e A251865 Read by rows: %e A251865 n maximal-order elements (<n) mod n %e A251865 1 0 %e A251865 2 1 %e A251865 3 2 %e A251865 4 3 %e A251865 5 2, 3 %e A251865 6 5 %e A251865 7 3, 5 %e A251865 8 3, 5, 7 %e A251865 9 2, 5 %e A251865 10 3, 7 %e A251865 11 2, 6, 7, 8 %e A251865 12 5, 7, 11 %e A251865 13 2, 6, 7, 11 %e A251865 14 3, 5 %e A251865 15 2, 7, 8, 13 %e A251865 16 3, 5, 11, 13 %e A251865 17 3, 5, 6, 7, 10, 11, 12, 14 %e A251865 18 5, 11 %e A251865 19 2, 3, 10, 13, 14, 15 %e A251865 20 3, 7, 13, 17 %e A251865 etc. %t A251865 a[n_] := Select[Range[0, n-1], GCD[#, n] == 1 && MultiplicativeOrder[#, n] == CarmichaelLambda[n]& ]; Table[a[n], {n, 1, 36}] %o A251865 (PARI) c(n)=lcm((znstar(n))[2]) %o A251865 a(n)=for(k=0,n-1,if(gcd(k, n)==1 && znorder(Mod(k,n))==c(n), print1(k, ","))) %o A251865 n=1; while(n<37, a(n); n++) %Y A251865 Cf. A111076, A247176, A111725, A046147, A046145, A046146, A046144, A060749, A001918, A071894, A008330. %K A251865 nonn,tabf %O A251865 1,3 %A A251865 _Eric Chen_, May 20 2015