A251925 Prime powers p^k (k>=2) of the form (n^2+1)/2.
25, 841, 28561, 32959081, 1119638521, 1985636569351347658201, 3051519929713402294221039791281, 4689566069222821420312720463003656425961, 183840368926047361112315395593676258316051401, 17020879736268069268391497343746883355223007561030622302744641179601
Offset: 1
Keywords
Examples
The first few terms correspond to 7^2 + 1 = 2 * 5^2 = 2 * 25, 41^2 + 1 = 2 * 29^2 = 2 * 841, 239^2 + 1 = 2 * 13^4 = 2 * 28561, 8119^2 + 1 = 2 * 5741^2 = 2 * 32959081, 47321^2 + 1 = 2 * 33461^2 = 2 * 1119638521, 63018038201^2+1 = 2 * 44560482149^2 = 2 * 1985636569351347658201.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..19
- Joerg Arndt, Arctan relations for Pi (the author's starting point for this sequence).
Crossrefs
Programs
-
Mathematica
With[{r=Range[100]},Select[((ChebyshevT[r,I]/I^r)^2+1)/2,!PrimeQ[#]&&PrimePowerQ[#]&]] (* Paolo Xausa, Nov 13 2023, after Joerg Arndt *)
-
PARI
forstep(n=1,10^9,2, t=(n^2+1)/2; if( !isprime(t) && isprimepower(t), print1(t,", ")));
-
PARI
/* much more efficient: */ {b(n) = polchebyshev(n, 1, I) / I^n} for(n=1,10^3,t=(b(n)^2+1)/2;if(!isprime(t)&&isprimepower(t),print1(t,", ")));
Comments