cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251926 The Faulhaber-Knuth a(0,n) sequence.

This page as a plain text file.
%I A251926 #40 Aug 03 2025 10:21:46
%S A251926 2,1,1,1,1,0,0,1,37,-60,-5,37,174,-955,-10545,38610,176297,-322740,
%T A251926 -205420,4512655,56820585,-104019264,-25907081,94854194,1141847218,
%U A251926 -2090335775,-414239903275,6066664425833,85621405759989,-156743813184120,-4337631088920,47644406040193,1265208493396175131,-2316168508680582540,-192288633159406495
%N A251926 The Faulhaber-Knuth a(0,n) sequence.
%C A251926 a(n) is equal to the remainder when dividing the polynomial T_n(x) by x^2 + x - 1. T_n(x) (in Z[x]) is the positive integer multiplicity of the modified Faulhaber polynomial T*_n(x), coefficients of which have GCD equal to 1. We have T*_n(x) = S(n;x)/x^2(x+1)^2 if n is odd, and T*_n(x) = S(n;x)/x(x+1)(2x+1) if n is even, n >= 4, where S(n;x) denotes the n-th Faulhaber polynomial, i.e., S(n;x) = 1/(n+1) sum{taken over i=0,1,...,n} Bin(n+1,i)Bern(i)x^(n+1-i), and Bern(i) denotes the i-th Bernoulli number with Bern(1)=1/2.
%C A251926 We note that every T_n(x) is a polynomial in the variable (x^2 + x - 1), for example T_7(x) = 3(x^2 + x - 1)^2 + 2(x^2 + x - 1) + 1. Furthermore, every T_n(x) is a polynomial in (x^2 + x + a) for each complex a. But only for a = -1 is the element a(n) also equal to the remainder when dividing S(n;x) by x^2 + x + a if n is odd and S(n;x)/(2x+1) by x^2 + x + a if n is even.
%H A251926 Edyta Hetmaniok, Piotr Lorenc, Mariusz Pleszczyński, and Roman Wituła, <a href="http://dx.doi.org/10.1016/j.amc.2014.10.057">Iterated integrals of polynomials</a>, Applied Mathematics and Computation, Volume 249, 15 December 2014, Pages 389-398.	
%H A251926 D. E. Knuth, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1197512-7">Johann Faulhaber and sums of powers</a>, Math. Comput. 203 (1993), 277-294.
%H A251926 Piotr Lorenc, Jakub Jan Ludew, Mariusz Pleszczyński, Alicja Samulewicz, and Roman Wituła, <a href="http://mat.polsl.pl/monografie/books/spoem/mono_spem_str_201-218.pdf">Iterated integrals of Faulhaber polynomials and some properties of their roots</a>, 2018.
%e A251926 We have: T_4(x) = 3x^2 + 3x - 1, T_4(x) - T_5(x) = x^2 + x, T_6(x) - T_7(x) = x^2 + x - 1, T_9(x) = (x^2 + x - 1)(2x^4 + 4x^3 - x^2 - 3x + 3) and T_15(x) - T_12(x) is divisible by (x^2 + x - 1), which implies a(0)=2, a(1)=1, a(2)=a(3), a(5)=0 and a(8)=a(11).
%t A251926 coeffFaulh[n_] := Module[{t, tab = {}, s, p, x},
%t A251926   If[n < 4, Return["Give n greater than 3."]];
%t A251926   t = Table[1, {n + 2}];
%t A251926   Do[t[[i + 1]] = BernoulliB[i], {i, 1, n + 1}];
%t A251926   t[[2]] = 1/2;
%t A251926   s[m_, x_] := (Sum[Binomial[m + 1, i]t[[ i + 1]] x^(m + 1 - i),{i,0,m}])/(m + 1);
%t A251926   Do[If[Mod[i, 2] == 0,
%t A251926     p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x (x + 1) (2 x + 1))][[2,1]], -1 + x + x^2, x],
%t A251926     p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x^2 (x + 1)^2)][[2,1]], -1 + x + x^2, x]];
%t A251926    tab = Append[tab, p], {i, 4, n}];
%t A251926   tab]
%Y A251926 Cf. A093556, A093557.
%K A251926 sign
%O A251926 4,1
%A A251926 _Roman Witula_, Dec 11 2014