A251966 Numbers representable as both b^c - b + c and x^y + x - y, where b, c, x, y are integers greater than 1.
4, 14, 18, 27, 123, 256, 3125, 6556, 6566, 46656, 823543, 16777216, 387420489, 10000000000, 285311670611, 8916100448256, 95367431640610, 95367431640640, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177
Offset: 1
Keywords
Examples
a(5) = 123 = 2^7 + 2 - 7 = 5^3 - 5 + 3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..30
Programs
-
Mathematica
Clear[b0, c0, x0, y0]; m = 100; max = 2^m; tb = Flatten[Table[b0[bc = b^c - b + c ] = b; c0[bc] = c; bc, {b, 2, m}, {c, 2, m}]]; tx = Flatten[Table[x0[xy = x^y + x - y] = x; y0[xy] = y; xy, {x, 2, m}, {y, 2, m}]]; inter = Intersection[Select[tb, # <= max &], Select[tx, # <= max &]]; Table[Print[n = inter[[k]], " b = ", b0[n], " c = ", c0[n], " x = ", x0[n], " y = ", y0[n]]; n, {k, Length[inter]}] (* Jean-François Alcover, Mar 23 2015 *)
-
Python
TOP = 10000000 a = [0]*TOP for y in range(2, TOP//2): if 2**y+2-y>=TOP: break for x in range(2, TOP//2): k = x**y+x-y if k>=TOP: break if k>=0: a[k]=1 for y in range(2, TOP//2): if 2**y-2+y>=TOP: break for x in range(2, TOP//2): k = x**y-x+y if k>=TOP: break if k>=0: a[k]|=2 print([n for n in range(TOP) if a[n]==3])
Comments