cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251970 Number of (n+1)X(4+1) 0..3 arrays with nondecreasing sum of every two consecutive values in every row and column.

Original entry on oeis.org

40000, 1750000, 76562500, 1500625000, 29412250000, 345888060000, 4067643585600, 33470895790080, 275417656786944, 1738925256499200, 10979183698560000, 56483045388000000, 290580293025000000
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2014

Keywords

Comments

Column 4 of A251974

Examples

			Some solutions for n=1
..1..0..2..1..3....0..0..3..3..3....1..1..3..2..3....0..1..3..2..3
..0..1..0..3..1....1..3..1..3..2....0..0..2..3..3....1..0..1..0..1
		

Formula

Empirical for n mod 2 = 0: a(n) = (1/1662081589978752614400)*n^30 + (11/92337866109930700800)*n^29 + (943/83104079498937630720)*n^28 + (47953/69253399582448025600)*n^27 + (351019/11542233263741337600)*n^26 + (1181903/1154223326374133760)*n^25 + (237977021/8656674947806003200)*n^24 + (871812367/1442779157967667200)*n^23 + (23980946683/2164168736951500800)*n^22 + (6888391429/40077198832435200)*n^21 + (410890073857/180347394745958400)*n^20 + (469036933181/18034739474595840)*n^19 + (34778169875659/135260546059468800)*n^18 + (49833698053129/22543424343244800)*n^17 + (560393123760047/33815136514867200)*n^16 + (611489881425653/5635856085811200)*n^15 + (174883489382521/281792804290560)*n^14 + (1091661732017293/352241005363200)*n^13 + (10689328634913073/792542262067200)*n^12 + (1122700571624951/22015062835200)*n^11 + (8262098206990751/49533891379200)*n^10 + (1936285038107993/4127824281600)*n^9 + (14335680552163/12740198400)*n^8 + (340108128733/149299200)*n^7 + (38196515411/9953280)*n^6 + (1215850999/230400)*n^5 + (996397801/172800)*n^4 + (1732123/360)*n^3 + 2877*n^2 + (3290/3)*n + 200
Empirical for n mod 2 = 1: a(n) = (1/1662081589978752614400)*n^30 + (11/92337866109930700800)*n^29 + (755/66483263599150104576)*n^28 + (96137/138506799164896051200)*n^27 + (5643637/184675732219861401600)*n^26 + (95327689/92337866109930700800)*n^25 + (3084026953/110805439331916840960)*n^24 + (14195232967/23084466527482675200)*n^23 + (6285606168799/554027196659584204800)*n^22 + (1818323341547/10259762901103411200)*n^21 + (437381284243303/184675732219861401600)*n^20 + (1259711797335533/46168933054965350400)*n^19 + (150997718345688499/554027196659584204800)*n^18 + (43773380747151701/18467573221986140160)*n^17 + (1994221212754510117/110805439331916840960)*n^16 + (1379281874698406689/11542233263741337600)*n^15 + (128194112142692914747/184675732219861401600)*n^14 + (65109099544047901109/18467573221986140160)*n^13 + (25976938716966335630849/1662081589978752614400)*n^12 + (2783881569199717975213/46168933054965350400)*n^11 + (335060423413374542064199/1662081589978752614400)*n^10 + (160839481936796469771881/277013598329792102400)*n^9 + (87990300630403205261087/61558577406620467200)*n^8 + (4580647671213936778057/1538964435165511680)*n^7 + (4243423147407000686647/820781032088272896)*n^6 + (111714413920756533355/15199648742375424)*n^5 + (28125244339036387375/3377699720527872)*n^4 + (2034213950902854875/281474976710656)*n^3 + (5078568035210551875/1125899906842624)*n^2 + (1014269878926871875/562949953421312)*n + (389325925610015625/1125899906842624)