cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252042 Primes p such that 2*p^3 + 1 and 2*p^3 + 3 are also primes.

This page as a plain text file.
%I A252042 #10 Apr 03 2023 14:23:02
%S A252042 2,29,1709,5849,6857,6959,8999,10139,11909,13127,13877,15077,15749,
%T A252042 17657,19457,23357,23399,26729,27407,27479,28349,30047,31907,32957,
%U A252042 39569,46559,46589,46817,50417,58757,59219,60737,62207,62687,62819,66947,70589,71237,74699
%N A252042 Primes p such that 2*p^3 + 1 and 2*p^3 + 3 are also primes.
%H A252042 K. D. Bajpai, <a href="/A252042/b252042.txt">Table of n, a(n) for n = 1..11485</a>
%e A252042 a(2) = 29 is prime: 2*29^3 + 1 = 48779 and 2*29^3 + 3 = 48781 are both primes.
%e A252042 a(3) = 1709 is prime: 2*1709^3 + 1 = 9982887659 and 2*1709^3 + 3 = 9982887661 are both primes.
%t A252042 Select[Prime[Range[10000]], And[PrimeQ[2*#^3 + 1], PrimeQ[2*#^3 + 3]] &]
%t A252042 Select[Prime[Range[7500]],AllTrue[2#^3+{1,3},PrimeQ]&] (* _Harvey P. Dale_, Apr 03 2023 *)
%o A252042 (PARI)  s=[]; forprime(p=2, 10^5, if(isprime(2*p^3 + 1) && isprime(2*p^3 + 3), s=concat(s, p))); s
%Y A252042 Cf. A000040, A153507, A174363, A247101.
%K A252042 nonn
%O A252042 1,1
%A A252042 _K. D. Bajpai_, Dec 13 2014