A252068 Number of (n+2)X(1+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.
92, 105, 183, 375, 767, 1573, 3279, 6994, 15046, 32452, 70313, 153169, 334742, 732720, 1606016, 3524854, 7743783, 17022376, 37434303, 82351952, 181216059, 398841171, 877929646, 1932693875, 4255002737, 9368295558, 20627108406
Offset: 1
Keywords
Examples
Some solutions for n=4 ..2..2..1....2..2..2....1..2..2....2..2..2....2..2..2....1..2..2....0..1..1 ..1..2..2....1..2..2....2..2..2....2..1..2....2..2..2....2..2..2....1..0..0 ..2..2..2....2..2..2....2..1..2....2..2..2....2..2..2....2..2..2....0..0..1 ..2..2..2....2..1..2....2..2..2....2..2..2....2..2..1....2..2..2....1..1..0 ..2..2..2....2..2..2....1..2..2....1..2..2....1..2..2....1..2..2....0..0..1 ..2..2..1....2..2..1....2..1..2....2..2..1....2..2..2....2..2..1....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +2*a(n-3) +2*a(n-4) -5*a(n-5) -6*a(n-6) -8*a(n-7) -3*a(n-8) +3*a(n-9) +6*a(n-10) +6*a(n-11) +2*a(n-12) for n>14
Comments