cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252075 T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

This page as a plain text file.
%I A252075 #6 Jun 02 2025 10:46:01
%S A252075 92,105,105,183,152,183,375,419,419,375,767,1135,1497,1135,767,1573,
%T A252075 3029,5085,5085,3029,1573,3279,8352,17455,21862,17455,8352,3279,6994,
%U A252075 23091,60245,92225,92225,60245,23091,6994,15046,63460,206747,391934,480464
%N A252075 T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.
%C A252075 Table starts
%C A252075 ....92....105.....183.......375........767........1573.........3279
%C A252075 ...105....152.....419......1135.......3029........8352........23091
%C A252075 ...183....419....1497......5085......17455.......60245.......206747
%C A252075 ...375...1135....5085.....21862......92225......391934......1669294
%C A252075 ...767...3029...17455.....92225.....480464.....2547765.....13460641
%C A252075 ..1573...8352...60245....391934....2547765....16789564....110131513
%C A252075 ..3279..23091..206747...1669294...13460641...110131513....896763044
%C A252075 ..6994..63460..711749...7114867...71027923...722619033...7301549024
%C A252075 .15046.174704.2455039..30309042..375675345..4749948377..59570598626
%C A252075 .32452.481577.8451165.129016031.1985308056.31181555206.485457428288
%H A252075 R. H. Hardin, <a href="/A252075/b252075.txt">Table of n, a(n) for n = 1..391</a>
%F A252075 Empirical for column k:
%F A252075 k=1: [linear recurrence of order 12] for n>14
%F A252075 k=2: [order 9] for n>11
%F A252075 k=3: [order 16] for n>18
%F A252075 k=4: [order 24] for n>26
%F A252075 k=5: [order 44] for n>46
%F A252075 k=6: [order 72] for n>74
%e A252075 Some solutions for n=4 k=4
%e A252075 ..2..1..2..2..2..1....2..2..2..2..2..2....2..2..1..2..2..2....1..2..2..2..1..2
%e A252075 ..1..2..2..2..2..2....2..1..2..2..2..2....2..2..2..2..2..2....2..2..2..2..2..1
%e A252075 ..2..2..2..2..2..2....2..2..2..2..1..2....2..1..2..2..2..2....2..1..2..2..2..2
%e A252075 ..2..2..2..2..2..2....2..2..2..2..2..2....2..2..2..2..1..2....2..2..2..2..2..2
%e A252075 ..2..1..2..2..1..2....2..2..2..2..2..2....1..2..2..2..2..2....1..2..2..2..2..2
%e A252075 ..2..2..2..2..2..2....2..2..2..2..2..1....2..2..2..1..2..2....2..1..2..2..2..1
%K A252075 nonn,tabl
%O A252075 1,1
%A A252075 _R. H. Hardin_, Dec 13 2014