cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A252069 Number of (n+2) X (2+2) 0..2 arrays with every 3 X 3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

105, 152, 419, 1135, 3029, 8352, 23091, 63460, 174704, 481577, 1326679, 3654425, 10068184, 27738117, 76416462, 210524456, 579990085, 1597852627, 4402027937, 12127445290, 33410714339, 92045405682, 253582052742, 698610194521
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Column 2 of A252075.

Examples

			Some solutions for n=4:
..2..2..2..2....2..1..2..2....2..2..2..2....2..2..2..1....2..2..2..2
..2..2..1..2....2..2..2..1....2..2..2..2....1..2..2..2....2..1..2..2
..1..2..2..2....2..2..2..2....2..2..2..2....2..2..1..2....2..2..2..2
..2..2..2..2....2..2..2..2....2..1..2..2....2..2..2..2....2..2..2..2
..2..2..2..2....2..2..2..2....2..2..2..2....2..2..2..1....2..2..2..2
..2..1..2..2....1..2..2..1....1..2..2..2....2..2..1..2....2..2..1..2
		

Crossrefs

Cf. A252075.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) + 4*a(n-3) - a(n-4) - 4*a(n-5) - 3*a(n-6) + a(n-8) + a(n-9) for n>11.
Empirical g.f.: x*(105 - 58*x + 10*x^2 - 275*x^3 - 163*x^4 + 55*x^5 + 160*x^6 + 77*x^7 + 6*x^8 - 39*x^9 - 4*x^10) / ((1 - x)*(1 - x - 2*x^2 - 6*x^3 - 5*x^4 - x^5 + 2*x^6 + 2*x^7 + x^8)). - Colin Barker, Mar 20 2018

A252068 Number of (n+2)X(1+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

92, 105, 183, 375, 767, 1573, 3279, 6994, 15046, 32452, 70313, 153169, 334742, 732720, 1606016, 3524854, 7743783, 17022376, 37434303, 82351952, 181216059, 398841171, 877929646, 1932693875, 4255002737, 9368295558, 20627108406
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Column 1 of A252075

Examples

			Some solutions for n=4
..2..2..1....2..2..2....1..2..2....2..2..2....2..2..2....1..2..2....0..1..1
..1..2..2....1..2..2....2..2..2....2..1..2....2..2..2....2..2..2....1..0..0
..2..2..2....2..2..2....2..1..2....2..2..2....2..2..2....2..2..2....0..0..1
..2..2..2....2..1..2....2..2..2....2..2..2....2..2..1....2..2..2....1..1..0
..2..2..2....2..2..2....1..2..2....1..2..2....1..2..2....1..2..2....0..0..1
..2..2..1....2..2..1....2..1..2....2..2..1....2..2..2....2..2..1....1..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-3) +2*a(n-4) -5*a(n-5) -6*a(n-6) -8*a(n-7) -3*a(n-8) +3*a(n-9) +6*a(n-10) +6*a(n-11) +2*a(n-12) for n>14

A252070 Number of (n+2)X(3+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

183, 419, 1497, 5085, 17455, 60245, 206747, 711749, 2455039, 8451165, 29078125, 100127009, 344830169, 1187280673, 4087598979, 14073866379, 48459148697, 166851565147, 574482172193, 1977991833479, 6810453196661, 23449166058617
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Column 3 of A252075

Examples

			Some solutions for n=4
..2..2..2..2..2....2..1..2..2..2....2..2..2..2..2....2..2..2..2..1
..2..2..2..2..2....1..2..2..2..2....2..2..2..2..2....2..2..2..2..2
..2..2..2..2..2....2..2..2..2..1....2..2..2..2..1....2..2..2..2..2
..2..2..2..2..1....2..2..2..2..2....2..2..2..2..2....1..2..2..2..2
..2..1..2..2..2....2..1..2..2..2....2..1..2..2..2....2..2..2..2..1
..2..2..2..1..2....2..2..2..2..2....2..2..2..2..1....2..2..2..1..2
		

Formula

Empirical: a(n) = 2*a(n-1) +11*a(n-3) +20*a(n-4) +12*a(n-5) -7*a(n-6) -69*a(n-7) -49*a(n-8) +69*a(n-9) +59*a(n-10) -9*a(n-11) -30*a(n-12) -14*a(n-13) +2*a(n-14) +4*a(n-16) for n>18

A252071 Number of (n+2)X(4+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

375, 1135, 5085, 21862, 92225, 391934, 1669294, 7114867, 30309042, 129016031, 549319037, 2339547000, 9963141845, 42425232250, 180661430026, 769335984173, 3276146397838, 13951092432179, 59409215103993, 252988054381898
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Column 4 of A252075

Examples

			Some solutions for n=4
..2..1..2..2..1..2....2..2..2..2..1..2....1..2..2..2..2..1....2..2..2..2..2..2
..1..2..2..2..2..1....2..2..2..2..2..2....2..2..2..2..2..2....2..2..2..1..2..2
..2..2..2..2..2..2....2..1..2..2..2..2....2..2..2..2..2..2....2..1..2..2..2..2
..2..1..2..2..2..2....2..2..2..1..2..2....1..2..2..2..2..2....2..2..2..2..2..2
..2..2..2..2..2..1....2..2..2..2..2..2....2..2..2..2..2..1....1..2..2..2..2..2
..2..2..2..2..2..2....1..2..2..2..1..2....2..2..2..1..2..2....2..2..2..2..2..1
		

Formula

Empirical: a(n) = 2*a(n-1) +5*a(n-2) +14*a(n-3) +34*a(n-4) -16*a(n-5) -79*a(n-6) -150*a(n-7) -94*a(n-8) +581*a(n-9) +457*a(n-10) -913*a(n-11) -631*a(n-12) +692*a(n-13) +433*a(n-14) -236*a(n-15) -116*a(n-16) +72*a(n-17) -57*a(n-18) -32*a(n-19) +38*a(n-20) -15*a(n-21) +5*a(n-22) +11*a(n-23) -4*a(n-24) for n>26

A252072 Number of (n+2)X(5+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

767, 3029, 17455, 92225, 480464, 2547765, 13460641, 71027923, 375675345, 1985308056, 10482759501, 55378851635, 292644335776, 1546162330278, 8168095347950, 43152835319630, 227991513370743, 1204546728063178
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Column 5 of A252075

Examples

			Some solutions for n=4
..2..2..2..1..2..2..2....2..2..2..2..1..2..2....2..2..2..2..2..2..1
..2..1..2..2..2..1..2....2..1..2..2..2..2..2....1..2..2..2..1..2..2
..2..2..2..2..2..2..2....2..2..2..2..2..1..2....2..2..2..2..2..2..2
..2..2..1..2..2..2..1....2..2..1..2..2..2..2....2..2..2..2..2..2..2
..2..2..2..2..2..2..2....1..2..2..2..2..2..1....1..2..2..2..2..2..1
..2..2..2..1..2..2..2....2..1..2..2..2..2..2....2..1..2..2..2..2..2
		

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) +39*a(n-3) +181*a(n-4) +262*a(n-5) +238*a(n-6) -1529*a(n-7) -4996*a(n-8) -1940*a(n-9) +5551*a(n-10) +17305*a(n-11) +23836*a(n-12) -26075*a(n-13) -64360*a(n-14) -11102*a(n-15) +51639*a(n-16) +81824*a(n-17) +35975*a(n-18) -53399*a(n-19) -80282*a(n-20) -59920*a(n-21) -23443*a(n-22) +72246*a(n-23) +40762*a(n-24) -1573*a(n-25) +23887*a(n-26) -59858*a(n-27) +34106*a(n-28) -6361*a(n-29) -81*a(n-30) +24130*a(n-31) -31441*a(n-32) +25513*a(n-33) -20671*a(n-34) +14968*a(n-35) -8162*a(n-36) +4626*a(n-37) -2679*a(n-38) +1036*a(n-39) -411*a(n-40) +180*a(n-41) -13*a(n-42) -16*a(n-43) +5*a(n-44) for n>46

A252073 Number of (n+2)X(6+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

1573, 8352, 60245, 391934, 2547765, 16789564, 110131513, 722619033, 4749948377, 31181555206, 204626875063, 1343622742626, 8822820748320, 57923805951945, 380282422081555, 2496764092390189, 16392666023439258, 107625734028805523
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Column 6 of A252075

Examples

			Some solutions for n=3
..1..2..2..2..1..2..2..1....2..1..2..2..2..2..1..2....1..2..2..2..2..2..2..2
..2..2..1..2..2..2..2..2....1..2..2..2..1..2..2..2....2..2..2..2..2..2..2..1
..2..2..2..2..2..2..2..2....2..2..2..2..2..2..2..2....2..2..2..1..2..2..2..2
..2..1..2..2..2..2..2..2....2..2..2..1..2..2..2..2....2..2..2..2..2..2..2..2
..2..2..2..2..2..2..1..2....1..2..2..2..2..2..2..2....2..2..2..2..1..2..2..1
		

Formula

Empirical recurrence of order 72 (see link above)

A252074 Number of (n+2)X(7+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

3279, 23091, 206747, 1669294, 13460641, 110131513, 896763044, 7301549024, 59570598626, 485457428288, 3954090473063, 32222610105491, 262627685087219, 2140187356615074, 17439608164244761, 142114394703257745
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Column 7 of A252075

Examples

			Some solutions for n=2
..2..1..2..2..2..1..2..2..2....2..2..1..2..2..2..2..2..2
..2..2..2..1..2..2..2..2..2....2..2..2..2..1..2..2..1..2
..1..2..2..2..2..2..2..2..2....2..2..2..2..2..2..2..2..2
..2..2..2..2..2..2..1..2..2....2..1..2..2..2..2..2..2..2
		

A252067 Number of (n+2)X(n+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.

Original entry on oeis.org

92, 152, 1497, 21862, 480464, 16789564, 896763044, 73759241675, 9393184984375, 1838801806417480, 553960321837762317, 257519518174289401204, 184540608154581393175420, 203698879433082432079178119
Offset: 1

Views

Author

R. H. Hardin, Dec 13 2014

Keywords

Comments

Diagonal of A252075

Examples

			Some solutions for n=4
..2..2..2..2..2..2....2..2..1..2..2..2....2..2..2..1..2..2....1..2..2..2..2..1
..1..2..2..2..2..2....1..2..2..2..1..2....2..2..2..2..2..2....2..2..2..2..2..2
..2..2..2..1..2..2....2..2..2..2..2..2....2..2..2..2..2..2....2..1..2..2..2..2
..2..2..2..2..2..2....2..2..2..2..2..2....2..2..2..2..2..2....2..2..2..2..1..2
..2..2..2..2..2..2....1..2..2..2..2..1....2..2..2..1..2..2....2..2..2..2..2..2
..2..2..2..2..2..2....2..2..2..2..1..2....2..2..2..2..2..2....1..2..2..2..2..1
		
Showing 1-8 of 8 results.