cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A252171 Number of length n+2 0..2 arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

3, 49, 83, 369, 957, 3217, 9295, 28977, 86267, 262541, 787121, 2374869, 7129517, 21441049, 64366847, 193314809, 580205169, 1741524549, 5225949099, 15681813101, 47052271005, 141174409049, 423556062389, 1270747118001, 3812396126529
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Column 2 of A252177

Examples

			Some solutions for n=6
..0....0....2....0....1....2....0....1....1....0....1....2....0....1....0....2
..1....0....2....1....1....2....0....0....0....2....1....0....1....2....1....0
..2....0....1....0....1....1....0....0....1....0....0....2....1....0....0....0
..1....0....2....0....2....1....2....2....2....1....2....2....0....2....1....2
..1....0....1....2....1....1....2....1....0....0....2....2....1....0....2....0
..0....1....1....2....0....0....2....2....1....0....0....1....1....2....2....2
..0....1....2....1....1....1....0....0....0....0....1....1....1....2....2....2
..2....1....1....2....1....2....1....2....2....2....0....1....1....0....1....0
		

Formula

Empirical: a(n) = 8*a(n-1) -21*a(n-2) +10*a(n-3) +54*a(n-4) -128*a(n-5) +125*a(n-6) -142*a(n-8) +176*a(n-9) -199*a(n-10) +216*a(n-11) -150*a(n-12) +80*a(n-13) -24*a(n-14)

A252172 Number of length n+2 0..3 arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

4, 132, 264, 1872, 6820, 31420, 123826, 515268, 2058802, 8332796, 33350162, 133891940, 535789038, 2145632584, 8584207782, 34349419412, 137408677592, 549699224224, 2198863697876, 8795786194236, 35183533311476, 140735839290104
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Column 3 of A252177

Examples

			Some solutions for n=6
..3....2....1....2....1....3....1....2....0....1....0....0....2....0....3....0
..2....2....1....3....1....2....3....0....1....1....3....3....2....3....2....3
..3....3....0....1....0....3....0....0....2....0....2....3....2....3....3....0
..0....2....1....1....1....1....3....0....1....0....2....2....1....1....2....0
..1....1....1....0....0....1....0....3....2....0....3....3....2....3....1....3
..0....0....3....0....3....1....0....1....3....0....1....0....1....1....0....1
..3....1....3....3....3....0....2....3....2....2....1....0....3....0....3....2
..3....0....2....1....0....2....0....1....2....2....2....3....0....2....1....0
		

Formula

Empirical: a(n) = 13*a(n-1) -60*a(n-2) +76*a(n-3) +310*a(n-4) -1328*a(n-5) +1601*a(n-6) +1043*a(n-7) -4739*a(n-8) +6283*a(n-9) -16535*a(n-10) +47913*a(n-11) -56399*a(n-12) -41587*a(n-13) +227738*a(n-14) -387264*a(n-15) +541852*a(n-16) -755788*a(n-17) +635056*a(n-18) +469432*a(n-19) -2549608*a(n-20) +5018568*a(n-21) -7394016*a(n-22) +8952448*a(n-23) -8287952*a(n-24) +4052560*a(n-25) +3641808*a(n-26) -12878128*a(n-27) +21320784*a(n-28) -27162288*a(n-29) +29035680*a(n-30) -26480832*a(n-31) +20563584*a(n-32) -13528064*a(n-33) +7524864*a(n-34) -3517952*a(n-35) +1345536*a(n-36) -396288*a(n-37) +79872*a(n-38) -8192*a(n-39) for n>40

A252173 Number of length n+2 0..4 arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

5, 285, 687, 6361, 30315, 179225, 907249, 4728833, 23847033, 120644221, 605522767, 3038459385, 15215512685, 76167143089, 381063555999, 1906111738921, 9532798497759, 47671420448717, 238379347788679, 1191968945583273
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Column 4 of A252177

Examples

			Some solutions for n=6
..2....2....0....2....2....4....2....3....1....4....1....1....1....3....3....2
..0....0....0....2....1....0....2....2....1....0....0....0....1....0....0....2
..0....1....2....2....1....3....0....4....1....4....4....2....0....1....4....3
..2....3....4....3....0....4....3....2....2....0....2....3....3....1....0....3
..4....3....2....1....2....1....1....1....0....3....1....3....1....0....4....1
..4....4....0....0....0....3....2....4....4....3....1....2....0....4....2....0
..2....2....2....1....0....4....3....3....1....4....2....0....1....3....0....1
..0....3....0....0....4....3....4....3....4....2....4....0....1....4....4....4
		

A252178 Number of length 2+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

12, 49, 132, 285, 536, 917, 1464, 2217, 3220, 4521, 6172, 8229, 10752, 13805, 17456, 21777, 26844, 32737, 39540, 47341, 56232, 66309, 77672, 90425, 104676, 120537, 138124, 157557, 178960, 202461, 228192, 256289, 286892, 320145, 356196, 395197
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Examples

			Some solutions for n=6:
..4....2....0....4....2....6....2....1....4....1....4....4....2....4....2....2
..6....2....2....5....2....6....2....1....3....1....5....1....6....3....4....0
..0....0....3....1....1....0....4....6....2....2....0....6....0....4....2....6
..5....2....0....2....1....5....4....5....1....2....2....5....3....4....3....0
		

Crossrefs

Row 2 of A252177.

Formula

Empirical: a(n) = (1/6)*n^4 + (7/3)*n^3 + (29/6)*n^2 + (11/3)*n + 1.
Conjectures from Colin Barker, Dec 01 2018: (Start)
G.f.: x*(12 - 11*x + 7*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A252179 Number of length 3+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

12, 83, 264, 687, 1428, 2729, 4680, 7661, 11764, 17535, 25056, 35067, 47628, 63701, 83312, 107673, 136764, 172075, 213528, 262919, 320100, 387201, 463992, 552965, 653796, 769367, 899248, 1046739, 1211292, 1396653, 1602144, 1831985, 2085356
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Examples

			Some solutions for n=6:
..6....6....2....5....5....6....0....2....5....0....0....4....4....4....0....2
..0....0....0....5....5....1....3....1....3....1....1....4....5....0....3....1
..4....0....3....3....5....2....3....1....6....1....1....6....6....1....2....5
..4....2....0....0....0....0....4....5....6....1....2....6....3....2....2....6
..2....4....6....3....3....3....0....0....0....0....3....2....1....3....4....5
		

Crossrefs

Row 3 of A252177.

Formula

Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Empirical for n mod 2 = 0: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (11/2)*n^2 + (77/30)*n + 1.
Empirical for n mod 2 = 1: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (39/8)*n^2 + (79/60)*n + (1/16).
Empirical g.f.: x*(12 + 47*x + 15*x^2 - 9*x^3 - 41*x^4 - 13*x^5 + 3*x^6 + 3*x^7 - x^8) / ((1 - x)^6*(1 + x)^3). - Colin Barker, Dec 01 2018

A252180 Number of length 4+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

40, 369, 1872, 6361, 17092, 39109, 79672, 148673, 259248, 428045, 675436, 1027273, 1513112, 2169245, 3037220, 4166229, 5610160, 7435141, 9709732, 12516761, 15944392, 20095193, 25074784, 31012613, 38034620, 46293613, 55944576, 67167485
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Row 4 of A252177

Examples

			Some solutions for n=6
..6....3....4....1....6....2....0....5....1....2....4....1....3....0....3....4
..6....0....5....3....4....3....3....4....3....1....4....3....4....2....3....2
..2....6....2....1....2....3....5....0....1....3....1....6....1....5....4....6
..0....3....5....5....0....2....1....6....2....3....3....1....2....3....1....2
..5....6....5....3....5....1....4....6....0....1....4....6....4....1....0....0
..3....6....2....3....1....3....3....1....6....1....1....3....5....3....2....0
		

Formula

Empirical: a(n) = -a(n-1) +a(n-2) +5*a(n-3) +6*a(n-4) -2*a(n-5) -12*a(n-6) -16*a(n-7) -3*a(n-8) +17*a(n-9) +25*a(n-10) +13*a(n-11) -13*a(n-12) -25*a(n-13) -17*a(n-14) +3*a(n-15) +16*a(n-16) +12*a(n-17) +2*a(n-18) -6*a(n-19) -5*a(n-20) -a(n-21) +a(n-22) +a(n-23)
Empirical for n mod 12 = 0: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (3389/360)*n^2 + (409/90)*n + 1
Empirical for n mod 12 = 1: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (132259/12960)*n^2 + (91631/12960)*n + (4645/5184)
Empirical for n mod 12 = 2: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12631/1296)*n^3 + (30341/3240)*n^2 + (6647/1620)*n + (37/324)
Empirical for n mod 12 = 3: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (14411/1440)*n^2 + (10039/1440)*n + (69/64)
Empirical for n mod 12 = 4: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (31141/3240)*n^2 + (3761/810)*n - (35/81)
Empirical for n mod 12 = 5: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6221/648)*n^3 + (129059/12960)*n^2 + (81391/12960)*n + (6181/5184)
Empirical for n mod 12 = 6: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (3389/360)*n^2 + (863/180)*n + (5/4)
Empirical for n mod 12 = 7: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (132259/12960)*n^2 + (91631/12960)*n - (1835/5184)
Empirical for n mod 12 = 8: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12631/1296)*n^3 + (30341/3240)*n^2 + (3121/810)*n - (11/81)
Empirical for n mod 12 = 9: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (14411/1440)*n^2 + (10039/1440)*n + (149/64)
Empirical for n mod 12 = 10: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (31141/3240)*n^2 + (7927/1620)*n - (59/324)
Empirical for n mod 12 = 11: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6221/648)*n^3 + (129059/12960)*n^2 + (81391/12960)*n - (299/5184)

A252181 Number of length 5+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

56, 957, 6820, 30315, 100894, 277101, 654644, 1397115, 2729346, 5000775, 8646710, 14320677, 22753218, 35050107, 52358558, 76391397, 108844088, 152265601, 208998994, 282689603, 376505412, 495411841, 643581780, 827671511, 1052928232
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Row 5 of A252177

Examples

			Some solutions for n=5
..1....5....1....5....3....0....4....4....3....0....1....4....0....1....2....2
..0....4....1....3....1....2....4....2....4....5....2....4....2....0....2....3
..0....2....1....3....4....1....5....3....2....5....0....3....4....0....5....3
..4....0....0....5....3....0....3....1....1....4....0....4....5....1....2....5
..0....1....0....4....5....3....3....1....4....4....3....3....4....5....3....4
..1....2....4....5....3....4....4....0....4....3....1....5....1....3....2....4
..3....4....4....4....1....4....2....1....5....5....1....0....5....2....4....4
		

A252174 Number of length n+2 0..5 arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

6, 536, 1428, 17092, 100894, 753200, 4652710, 29364176, 177955614, 1080135428, 6499878776, 39104150100, 234816782208, 1409805025568, 8460732943882, 50772490924064, 304654183120186, 1828001400070884, 10968208935015636
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Column 5 of A252177

Examples

			Some solutions for n=5
..1....4....4....4....2....1....1....5....5....2....4....0....3....0....2....3
..0....2....5....5....5....0....4....3....4....4....4....1....1....4....1....2
..1....0....3....1....0....2....1....1....5....5....4....3....4....4....0....4
..1....2....2....0....5....3....1....0....5....4....0....2....2....3....5....5
..1....1....3....3....4....3....1....0....4....4....0....2....2....3....4....1
..2....1....4....3....5....0....4....4....0....1....5....5....1....4....4....4
..4....2....5....4....1....3....2....3....3....0....2....3....1....4....3....1
		

A252175 Number of length n+2 0..6 arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

7, 917, 2729, 39109, 277101, 2485637, 18231947, 135424961, 963247737, 6838373877, 48103629141, 337900112109, 2368821073603, 16597473994629, 116236940081089
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Column 6 of A252177

Examples

			Some solutions for n=4
..3....6....3....4....6....2....6....0....4....0....5....6....5....0....0....0
..2....1....6....4....3....1....0....2....0....6....6....4....6....0....1....4
..4....2....6....5....5....4....2....2....5....0....3....4....1....5....3....5
..5....1....1....5....3....2....6....0....0....0....6....6....5....1....5....0
..5....4....3....2....1....3....5....4....5....5....1....5....0....2....2....6
..3....1....0....5....0....1....2....1....3....5....4....4....3....5....6....1
		

A252176 Number of length n+2 0..7 arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

8, 1464, 4680, 79672, 654644, 6994984, 59838132, 513937352, 4190189694, 34020988396, 273415166334, 2193948803940
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Column 7 of A252177

Examples

			Some solutions for n=4
..0....6....4....2....1....7....3....0....6....7....3....2....1....0....3....2
..0....0....0....6....5....0....1....0....4....3....6....0....4....1....7....5
..5....0....7....2....1....4....6....0....6....4....4....3....2....3....4....1
..6....1....5....6....4....1....1....5....5....3....7....2....3....0....6....6
..4....3....7....5....1....6....6....7....6....3....1....5....6....6....1....6
..3....2....7....2....4....0....5....5....3....1....7....4....3....6....0....0
		
Showing 1-10 of 12 results. Next