A252179 Number of length 3+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.
12, 83, 264, 687, 1428, 2729, 4680, 7661, 11764, 17535, 25056, 35067, 47628, 63701, 83312, 107673, 136764, 172075, 213528, 262919, 320100, 387201, 463992, 552965, 653796, 769367, 899248, 1046739, 1211292, 1396653, 1602144, 1831985, 2085356
Offset: 1
Keywords
Examples
Some solutions for n=6: ..6....6....2....5....5....6....0....2....5....0....0....4....4....4....0....2 ..0....0....0....5....5....1....3....1....3....1....1....4....5....0....3....1 ..4....0....3....3....5....2....3....1....6....1....1....6....6....1....2....5 ..4....2....0....0....0....0....4....5....6....1....2....6....3....2....2....6 ..2....4....6....3....3....3....0....0....0....0....3....2....1....3....4....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A252177.
Formula
Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Empirical for n mod 2 = 0: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (11/2)*n^2 + (77/30)*n + 1.
Empirical for n mod 2 = 1: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (39/8)*n^2 + (79/60)*n + (1/16).
Empirical g.f.: x*(12 + 47*x + 15*x^2 - 9*x^3 - 41*x^4 - 13*x^5 + 3*x^6 + 3*x^7 - x^8) / ((1 - x)^6*(1 + x)^3). - Colin Barker, Dec 01 2018