cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252179 Number of length 3+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

12, 83, 264, 687, 1428, 2729, 4680, 7661, 11764, 17535, 25056, 35067, 47628, 63701, 83312, 107673, 136764, 172075, 213528, 262919, 320100, 387201, 463992, 552965, 653796, 769367, 899248, 1046739, 1211292, 1396653, 1602144, 1831985, 2085356
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Examples

			Some solutions for n=6:
..6....6....2....5....5....6....0....2....5....0....0....4....4....4....0....2
..0....0....0....5....5....1....3....1....3....1....1....4....5....0....3....1
..4....0....3....3....5....2....3....1....6....1....1....6....6....1....2....5
..4....2....0....0....0....0....4....5....6....1....2....6....3....2....2....6
..2....4....6....3....3....3....0....0....0....0....3....2....1....3....4....5
		

Crossrefs

Row 3 of A252177.

Formula

Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Empirical for n mod 2 = 0: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (11/2)*n^2 + (77/30)*n + 1.
Empirical for n mod 2 = 1: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (39/8)*n^2 + (79/60)*n + (1/16).
Empirical g.f.: x*(12 + 47*x + 15*x^2 - 9*x^3 - 41*x^4 - 13*x^5 + 3*x^6 + 3*x^7 - x^8) / ((1 - x)^6*(1 + x)^3). - Colin Barker, Dec 01 2018