A252180 Number of length 4+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.
40, 369, 1872, 6361, 17092, 39109, 79672, 148673, 259248, 428045, 675436, 1027273, 1513112, 2169245, 3037220, 4166229, 5610160, 7435141, 9709732, 12516761, 15944392, 20095193, 25074784, 31012613, 38034620, 46293613, 55944576, 67167485
Offset: 1
Keywords
Examples
Some solutions for n=6 ..6....3....4....1....6....2....0....5....1....2....4....1....3....0....3....4 ..6....0....5....3....4....3....3....4....3....1....4....3....4....2....3....2 ..2....6....2....1....2....3....5....0....1....3....1....6....1....5....4....6 ..0....3....5....5....0....2....1....6....2....3....3....1....2....3....1....2 ..5....6....5....3....5....1....4....6....0....1....4....6....4....1....0....0 ..3....6....2....3....1....3....3....1....6....1....1....3....5....3....2....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..94
Formula
Empirical: a(n) = -a(n-1) +a(n-2) +5*a(n-3) +6*a(n-4) -2*a(n-5) -12*a(n-6) -16*a(n-7) -3*a(n-8) +17*a(n-9) +25*a(n-10) +13*a(n-11) -13*a(n-12) -25*a(n-13) -17*a(n-14) +3*a(n-15) +16*a(n-16) +12*a(n-17) +2*a(n-18) -6*a(n-19) -5*a(n-20) -a(n-21) +a(n-22) +a(n-23)
Empirical for n mod 12 = 0: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (3389/360)*n^2 + (409/90)*n + 1
Empirical for n mod 12 = 1: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (132259/12960)*n^2 + (91631/12960)*n + (4645/5184)
Empirical for n mod 12 = 2: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12631/1296)*n^3 + (30341/3240)*n^2 + (6647/1620)*n + (37/324)
Empirical for n mod 12 = 3: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (14411/1440)*n^2 + (10039/1440)*n + (69/64)
Empirical for n mod 12 = 4: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (31141/3240)*n^2 + (3761/810)*n - (35/81)
Empirical for n mod 12 = 5: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6221/648)*n^3 + (129059/12960)*n^2 + (81391/12960)*n + (6181/5184)
Empirical for n mod 12 = 6: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (3389/360)*n^2 + (863/180)*n + (5/4)
Empirical for n mod 12 = 7: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (132259/12960)*n^2 + (91631/12960)*n - (1835/5184)
Empirical for n mod 12 = 8: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12631/1296)*n^3 + (30341/3240)*n^2 + (3121/810)*n - (11/81)
Empirical for n mod 12 = 9: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (14411/1440)*n^2 + (10039/1440)*n + (149/64)
Empirical for n mod 12 = 10: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (31141/3240)*n^2 + (7927/1620)*n - (59/324)
Empirical for n mod 12 = 11: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6221/648)*n^3 + (129059/12960)*n^2 + (81391/12960)*n - (299/5184)
Comments