A252229 The number of numbers j*r^k in the interval [n,n+1), where r = (1 + sqrt(5))/2, the golden ratio, and j >=0, k >= 0.
1, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 4, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 4, 3, 2, 2, 3, 2, 2, 3, 3, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 3, 2, 2, 3, 2, 3, 2, 3, 2
Offset: 0
Examples
in [0,1): 0 in [1,2): 1, 1 + r in [2,3): 2, 2 + r in [3,4): 3, 1+2*r in [4,5): 4, 1+3*r, 2 + r
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 100; r = (1 + Sqrt[5])/2; s[n_, j_] := s[n, j] = Floor[Log[n/j]/Log[r]]; a[n_] := a[n] = Sum[s[n + 1, j] - s[n, j], {j, 1, Floor[(n + 1)/r]}]; t = Join[{1}, Table[1 + a[n], {n, 1, z}]] (* A252229 *)
Formula
a(n) = 1 + sum{s(n+1,j) - s(n,j), j=1..floor[(n+1)/r]}, where s(n,j) = floor[log(n/j)/log(r)], for n >= 1.
Comments