This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252232 #20 Mar 13 2015 15:19:21 %S A252232 5,17,19,233,293,977,1451,1693,33301,308093 %N A252232 a(n) = smallest prime q where exactly n primes p exist such that p < q and q^(p-1) == 1 (mod p^2), i.e., smallest prime base q having exactly n Wieferich primes less than q. %C A252232 From _Robert G. Wilson v_, Mar 11 2015: (Start) %C A252232 n b p %C A252232 1: 5 {2} %C A252232 2: 17 {2, 3} %C A252232 3: 19 {3, 7, 13} %C A252232 4: 233 {2, 3, 11, 157} %C A252232 5: 293 {2, 5, 7, 19, 83} %C A252232 6: 977 {2, 11, 17, 109, 239, 401} %C A252232 7: 1451 {5, 7, 11, 13, 83, 173, 1259} %C A252232 8: 1693 {2, 3, 5, 11, 31, 37, 61, 109} %C A252232 9: 33301 {2, 3, 5, 7, 43, 293, 317, 383, 1627} %C A252232 10: 308093 {2, 5, 7, 11, 31, 47, 89, 167, 523, 619} %C A252232 ... (End) %e A252232 a(5) = 293, because q = 293 is the smallest prime for which there are exactly five primes p with p < q such that q^(p-1) == 1 (mod p^2), namely 2, 5, 7, 19 and 83. %o A252232 (PARI) for(n=1, 10, q=2; while(q > 1, q=nextprime(q+1); i=0; forprime(p=2, q, if(Mod(q, p^2)^(p-1)==1, i++); if(i==n, print1(q, ", "); break({2}))))) %Y A252232 Cf. A175932, A222206. %Y A252232 For the values of p, see A252582. %K A252232 nonn,hard,more %O A252232 1,1 %A A252232 _Felix Fröhlich_, Dec 15 2014