cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252245 Decimal expansion of zeta'''(1/2) (negated).

This page as a plain text file.
%I A252245 #7 Feb 16 2025 08:33:24
%S A252245 9,6,0,0,3,3,0,9,2,4,5,3,1,9,0,7,0,0,9,7,3,8,9,7,6,7,2,2,0,6,9,5,4,5,
%T A252245 9,3,0,2,5,1,4,0,1,8,8,4,6,5,5,5,7,2,8,0,5,4,2,9,9,9,0,8,0,6,5,6,7,0,
%U A252245 9,1,9,4,4,1,8,7,6,3,1,6,0,3,4,0,6,5,5,6,9,3,2,4,6,2,3,8,8,1,1,2,0,1,0,1
%N A252245 Decimal expansion of zeta'''(1/2) (negated).
%H A252245 MathOverflow, <a href="http://mathoverflow.net/questions/129706">Zeta(3) in terms of derivatives of zeta at 1/2 and pi</a>
%H A252245 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>
%F A252245 zeta(3) = (1/7)*(-Pi^3/4 + (2*zeta'(1/2)^3 - 3*zeta(1/2)*zeta'(1/2)*zeta''(1/2) + zeta(1/2)^2*zeta'''(1/2))/zeta(1/2)^3).
%e A252245 -96.003309245319070097389767220695459302514018846555728...
%t A252245 RealDigits[Zeta'''[1/2], 10, 104] // First
%Y A252245 Cf. A002117, A059750, A114875, A252244.
%K A252245 nonn,cons,easy
%O A252245 2,1
%A A252245 _Jean-François Alcover_, Dec 16 2014