This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252255 #7 Apr 15 2017 09:04:29 %S A252255 1,14,61,966,1428,9174,15642,19934,22155,27075,36650,48731,51095, %T A252255 54184,57902,59711,61039,89276,98645,113080,126850,140283,142149, %U A252255 154670,165822,190908,197705,198712,202096,203107,247268,274368,274716,307836,311925,331037,366740 %N A252255 Numbers n such that sigma(Rev(phi(n))) = phi(Rev(sigma(n))), where sigma is the sum of divisors and phi the Euler totient function. %H A252255 Paolo P. Lava, <a href="/A252255/b252255.txt">Table of n, a(n) for n = 1..100</a> %e A252255 phi(14) = 6, Rev(6) = 6 and sigma(6) = 12; %e A252255 sigma(14) = 24, Rev(24) = 42 and sigma(42) = 12. %p A252255 with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w; %p A252255 for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end: %p A252255 P:=proc(q) local a, b, k; global n; for n from 1 to q do %p A252255 if sigma(T(phi(n)))=phi(T(sigma(n))) then print(n); fi; od; end: P(10^12); %t A252255 Select[Range[400000],DivisorSigma[1,IntegerReverse[EulerPhi[#]]] == EulerPhi[ IntegerReverse[ DivisorSigma[ 1,#]]]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 15 2017 *) %Y A252255 Cf. A000010, A000203, A069225, A070835, A070856. %K A252255 nonn,base %O A252255 1,2 %A A252255 _Paolo P. Lava_, Dec 16 2014