cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252279 Primes p congruent to 1 mod 16 such that x^8 = 2 has a solution mod p.

This page as a plain text file.
%I A252279 #21 Jun 22 2024 22:27:21
%S A252279 257,337,881,1217,1249,1553,1777,2113,2593,2657,2833,4049,4177,4273,
%T A252279 4481,4513,4721,4993,5297,6353,6449,6481,6529,6689,7121,7489,8081,
%U A252279 8609,9137,9281,9649,10177,10337,10369,10433,10657,11329,11617,11633,12049,12241,12577
%N A252279 Primes p congruent to 1 mod 16 such that x^8 = 2 has a solution mod p.
%C A252279 For a prime p congruent to 1 mod 16, the number 2 is an octavic residue mod p if and only if there are integers x and y such that x^2 + 256*y^2 = p.
%H A252279 Arkadiusz Wesolowski, <a href="/A252279/b252279.txt">Table of n, a(n) for n = 1..10000</a>
%H A252279 <a href="/index/Pri#smp">Index entries for related sequences</a>
%o A252279 (Magma) [p: p in PrimesUpTo(12577) | p mod 16 eq 1 and exists(t){x : x in ResidueClassRing(p) | x^8 eq 2}]; // _Arkadiusz Wesolowski_, Dec 19 2020
%o A252279 (PARI) isok(p) = isprime(p) && (Mod(p, 16) == 1) && ispower(Mod(2, p), 8); \\ _Michel Marcus_, Dec 19 2020
%Y A252279 Subsequence of A045315.
%Y A252279 Has A070184 as a subsequence.
%K A252279 nonn
%O A252279 1,1
%A A252279 _Arkadiusz Wesolowski_, Dec 16 2014