This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252353 #42 Mar 26 2021 08:38:50 %S A252353 1,2,3,5,10,12,19,21,22,56,60,63,70,80,84,92,97,109,111,123,164,189, %T A252353 218,276,317,353,364,386,405,456,511,636,675,701,793,945,1090,1268, %U A252353 1272,1971,2088,2368,2482,2893,2966,3290,4161,4320,4533,4744,6357,7023,7430,7737,9499,9739 %N A252353 Numbers k such that Phi(k, 12) is prime, where Phi is the cyclotomic polynomial. %C A252353 Numbers k such that A019330(k) is prime. %C A252353 With some exceptions, terms of sequence are such that 12^n - 1 has only one primitive prime factor. 20 is an instance of such an exception, since 12^20 - 1 has a single primitive prime factor, 85403261, but Phi(20, 12) is divisible by 5, it is not prime. %C A252353 a(n) is a duodecimal unique period length. %e A252353 n Phi(n, 12) %e A252353 1 11 %e A252353 2 13 %e A252353 3 157 %e A252353 4 5 * 29 %e A252353 5 22621 %e A252353 6 7 * 19 %e A252353 7 659 * 4943 %e A252353 8 89 * 233 %e A252353 9 37 * 80749 %e A252353 10 19141 %e A252353 11 11 * 23 * 266981089 %e A252353 12 20593 %e A252353 etc. %t A252353 Select[Range[1728], PrimeQ[Cyclotomic[#, 12]] &] %o A252353 (PARI) for( i=1, 1728, ispseudoprime( polcyclo(i, 12)) && print1( i", ")) %Y A252353 Cf. A019330, A072226, A138919-A138940. %K A252353 nonn %O A252353 1,2 %A A252353 _Eric Chen_, Dec 16 2014 %E A252353 More terms from _Michel Marcus_, Dec 18 2014 %E A252353 More terms from _Amiram Eldar_, Mar 26 2021