A252398 Successive n with minimal relative distance |1-theta(n)/n|, where theta(n) = log(A034386(n)) is Chebyshev's theta function.
2, 3, 5, 7, 13, 19, 43, 47, 73, 103, 107, 109, 113, 199, 283, 467, 661, 887, 1063, 1069, 1097, 1103, 1109, 1123, 1129, 1303, 1307, 1321, 1327, 1621, 1627, 2803, 3931, 3947, 4273, 4289, 4297, 5867, 5869, 5881, 6373, 6379, 9439, 9473, 9479, 9497, 9551, 9859, 9931, 9949
Offset: 1
Keywords
Examples
Given that 1 - theta(3)/3 = 1 - log(6)/3 = 0.40..., 1 - theta(4)/4 = 1 - log(6)/4 = 0.55... and 1 - theta(5)/5 = 1 - log(30)/5 = 0.31..., the next term after 3 is 5.
Links
- Jean-François Alcover and Charles R Greathouse IV, Table of n, a(n) for n = 1..5000 (first 88 terms from Alcover)
- Eric Weisstein's MathWorld, Chebyshev functions
- Wikipedia, Chebyshev function
Programs
-
Mathematica
(* Adapted from PARI *) Reap[For[record = 2; theta = 0; p = 2, p < 2 * 10^8, p = NextPrime[p], theta = theta + Log[p] //N; d = Abs[1 - theta/p]; If[d < record, record = d; Print[p]; Sow[p]]]][[2, 1]]
-
PARI
/* Note: This program may fail if you replace 1e6 with a number larger than 1e17, and will certainly fail at some point below 1e316. These large numbers are not remotely feasible at the moment. */ r=th=0; forprime(p=2,1e6, th+=log(p); t=th/p; if(t>r, r=t; print1(p", "); if(t>1, warning("theta(n) > n, possible missed terms")))) \\ Charles R Greathouse IV, Dec 17 2014
Comments