cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252481 Numbers whose set of digits is simply connected to 1.

This page as a plain text file.
%I A252481 #11 Jan 11 2021 01:45:38
%S A252481 1,10,11,12,21,100,101,102,110,111,112,120,121,122,123,132,201,210,
%T A252481 211,212,213,221,231,312,321,1000,1001,1002,1010,1011,1012,1020,1021,
%U A252481 1022,1023,1032,1100,1101,1102,1110,1111,1112,1120,1121,1122,1123,1132,1200,1201,1202,1203,1210,1211,1212,1213,1220,1221,1222,1223
%N A252481 Numbers whose set of digits is simply connected to 1.
%C A252481 "Simply connected" means that there must not be a "hole" in the set of digits. E.g., {1,2,4} would not be allowed since '3' is missing.
%o A252481 (PARI) is(n)={d=Set(digits(n));d[1]==1 || (#d>1&&d[2]==1) || return; d[#d]==#d-!d[1]}
%o A252481 (Python)
%o A252481 def ok(n):
%o A252481   s = set(str(n)); return '1' in s and len(s) == ord(max(s))-ord(min(s))+1
%o A252481 def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
%o A252481 print(aupto(1223)) # _Michael S. Branicky_, Jan 10 2021
%Y A252481 Cf. A032981, A050278, A033075, A010785, A108965, A134336, A252490.
%K A252481 nonn,base
%O A252481 1,2
%A A252481 _M. F. Hasler_, Dec 24 2014