This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252486 #34 Feb 16 2025 08:33:24 %S A252486 64,36,15,29,22,21,15,19,15,17,15,16,14,15,13,12,11,11,13,14,12,13,13, %T A252486 12,12,12,12,12,11,11,11,11,11,13,11,11,11,10,11,11,11,11,11,10,11,11, %U A252486 11,11,11,11,11,11,9,11,10,11,11,11,9,10,11,11,11,11,10 %N A252486 Smallest k such that n^6 = a_1^6+...+a_k^6 where all the a_i are positive integers less than n. %C A252486 Inspired by Fermat's Last Theorem: 2 never occurs in this sequence. %C A252486 No n is known for which a(n)<7, according to the MathWorld page. The values 7, 8, 9, 10 and 11 occur first at indices 1141, 251, 54, 39, 18, cf. sequence A252476. %C A252486 I conjecture that the sequence is bounded by the initial term. Probably even a(3)=36, a(5)=29, a(6)=22 and some more are followed only by smaller terms. %C A252486 From results on Waring's problem, it is known that all a(n) <= A002804(6) = 73, and a(n) <= 24 for all sufficiently large n. - _Robert Israel_, Aug 17 2015 %H A252486 Giovanni Resta, <a href="/A252486/b252486.txt">Table of n, a(n) for n = 2..200</a> %H A252486 Jean-Charles Meyrignac, <a href="http://euler.free.fr/">Computing Minimal Equal Sums Of Like Powers</a> %H A252486 Manfred Scheucher, <a href="/A252486/a252486.sage.txt">Sage Script</a> %H A252486 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/DiophantineEquation6thPowers.html">Diophantine Equation--6th Powers</a> %H A252486 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem</a> %p A252486 M:= 10^8: %p A252486 R:= Vector(M, 74, datatype=integer[4]): %p A252486 for p from 1 to floor(M^(1/6)) do %p A252486 p6:= p^6; %p A252486 if p > 1 then A[p]:= R[p6] fi; %p A252486 R[p6]:= 1; %p A252486 for j from p6+1 to M do %p A252486 R[j]:= min(R[j], 1+R[j - p6]); %p A252486 od %p A252486 od: %p A252486 F:= proc(n, k, ub) %p A252486 local lb, m, bestyet, res; %p A252486 if ub <= 0 then return -1 fi; %p A252486 if n <= M then %p A252486 if n = 0 then return 0 %p A252486 elif R[n] > ub then return -1 %p A252486 else return R[n] %p A252486 fi %p A252486 fi; %p A252486 lb:= floor(n/k^6); %p A252486 if lb > ub then return -1 fi; %p A252486 bestyet:= ub; %p A252486 for m from lb to 0 by -1 do %p A252486 res:= procname(n-m*k^6, k-1, bestyet-m); %p A252486 if res >= 0 then %p A252486 bestyet:= res+m; %p A252486 fi %p A252486 od: %p A252486 return bestyet %p A252486 end proc: %p A252486 for n from floor(M^(1/6))+1 to 50 do %p A252486 A[n]:= F(n^6, n-1, 73) %p A252486 od: %p A252486 seq(A[n], n=2..50); # _Robert Israel_, Aug 17 2015 %t A252486 a[n_] := Module[{k}, For[k = 7, True, k++, If[IntegerPartitions[n^6, {k}, Range[n-1]^6] != {}, Print[n, " ", k]; Return[k]]]]; %t A252486 Table[a[n], {n, 2, 100}] (* _Jean-François Alcover_, Jul 29 2023 *) %o A252486 (PARI) a(n,verbose=0,m=6)={N=n^m;for(k=3,64,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!(verbose&&print1("/*"n" "v"*/"))&&return(k),1))} %o A252486 (Python) %o A252486 from itertools import count %o A252486 from sympy.solvers.diophantine.diophantine import power_representation %o A252486 def A252486(n): %o A252486 m = n**6 %o A252486 for k in count(2): %o A252486 try: %o A252486 next(power_representation(m,6,k)) %o A252486 except: %o A252486 continue %o A252486 return k # _Chai Wah Wu_, Jun 25 2024 %Y A252486 Cf. A161882, A161883, A161884, A161885. %K A252486 nonn %O A252486 2,1 %A A252486 _M. F. Hasler_, Dec 17 2014 %E A252486 More terms from _Manfred Scheucher_, Aug 15 2015 %E A252486 a(53)-a(66) from _Giovanni Resta_, Aug 17 2015