This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252487 #37 Feb 16 2025 08:33:24 %S A252487 128,28,66,39,28,26,21,20,18,22,22,22,20,21,14,17,14,14,17,16,17,14, %T A252487 16,13,15,13,12,15,13,15,13,14,13,14,13,13,14,12,12,12,13,12,12,12,11, %U A252487 13,13,12,12,13,12,12,11,12,11,11,12,12,11,12,9,12,11,11,11 %N A252487 Smallest k such that n^7 = a_1^7 + ... + a_k^7 and all a_i are positive integers less than n. %C A252487 Inspired by Fermat's Last Theorem: 2 never occurs in this sequence. %C A252487 No n is known for which a(n)<7, according to the MathWorld page. The values 7, 8, 9, ... occur first at indices 568, 102, 62, ... %C A252487 I conjecture that the sequence is bounded by the initial term a(2)=128. Probably even a(4)=66, a(5)=39, a(6)=28 and some more are followed only by smaller terms. %C A252487 I've uploaded two scripts; one to compute the b-file and one to generate an IP file. For the first script, a parameter kmax can be set to gain a speedup but more memory is used. The other one (which also works with large integers now) should be used in case someone has a good IP-solver. Higher terms might be computable faster with a good IP solver. - _Manfred Scheucher_, Aug 14 2015 %C A252487 From results on Waring's problem, it is known that all a(n) <= A002804(7) = 143, and a(n) <= 33 for all sufficiently large n. - _Robert Israel_, Aug 16 2015 %H A252487 Giovanni Resta, <a href="/A252487/b252487.txt">Table of n, a(n) for n = 2..200</a> %H A252487 Jean-Charles Meyrignac, <a href="http://euler.free.fr/">Computing Minimal Equal Sums Of Like Powers</a> %H A252487 Manfred Scheucher, <a href="/A252487/a252487_1.sage.txt">Sage Script for IP-generation</a> %H A252487 Manfred Scheucher, <a href="/A252487/a252487_2.sage.txt">Sage Script for b-file generation</a> %H A252487 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiophantineEquation7thPowers.html">Diophantine Equation--7th Powers</a> %H A252487 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem</a> %p A252487 M:= 10^8: %p A252487 R:= Vector(M,144, datatype=integer[4]): %p A252487 for p from 1 to floor(M^(1/7)) do %p A252487 p7:= p^7; %p A252487 if p > 1 then A[p]:= R[p7] fi; %p A252487 R[p7]:= 1; %p A252487 for j from p7+1 to M do %p A252487 R[j]:= min(R[j],1+R[j - p7]); %p A252487 od %p A252487 od: %p A252487 F:= proc(n,k,ub) %p A252487 local lb, m, bestyet, res; %p A252487 if ub <= 0 then return -1 fi; %p A252487 if n <= M then %p A252487 if n = 0 then return 0 %p A252487 elif R[n] > ub then return -1 %p A252487 else return R[n] %p A252487 fi %p A252487 fi; %p A252487 lb:= floor(n/k^7); %p A252487 if lb > ub then return -1 fi; %p A252487 bestyet:= ub; %p A252487 for m from lb to 0 by -1 do %p A252487 res:= procname(n-m*k^7, k-1, bestyet-m); %p A252487 if res >= 0 then %p A252487 bestyet:= res+m; %p A252487 fi %p A252487 od: %p A252487 return bestyet %p A252487 end proc: %p A252487 for n from floor(M^(1/7))+1 to 50 do %p A252487 A[n]:= F(n^7,n-1,144) %p A252487 od: %p A252487 seq(A[n],n=2..50); # _Robert Israel_, Aug 17 2015 %o A252487 (PARI) a(n,verbose=0,m=7)={N=n^m;for(k=3,999,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!(verbose&&print1("/*"n" "v"*/"))&&return(k),1))} %Y A252487 Cf. A002804, A161882, A161883, A161884, A161885, A252486. %K A252487 nonn %O A252487 2,1 %A A252487 _M. F. Hasler_, Dec 17 2014 %E A252487 More terms from _Manfred Scheucher_, Aug 15 2015 %E A252487 a(50)-a(66) from _Giovanni Resta_, Aug 17 2015