cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A252567 Number of (n+2)X(1+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

702, 742, 890, 1469, 2637, 4583, 8279, 15476, 28007, 51488, 96898, 176973, 326583, 615240, 1126387, 2079411, 3916443, 7178360, 13247301, 24939892, 45753026, 84395129, 158816016, 291599929, 537626773, 1011287507, 1858330859, 3424706510
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Column 1 of A252574

Examples

			Some solutions for n=4
..2..0..0....0..0..2....2..0..0....0..0..2....0..1..1....0..0..2....0..0..1
..0..1..0....3..2..2....2..3..2....3..2..2....1..0..1....3..2..2....3..2..2
..2..2..3....0..2..0....0..0..2....0..1..0....2..3..1....0..1..0....0..2..0
..2..0..0....0..0..2....1..0..0....0..0..2....0..0..2....0..0..1....0..0..1
..0..2..0....0..1..1....2..3..2....3..2..2....2..0..0....3..2..2....3..2..2
..1..1..3....0..2..0....0..0..2....0..2..0....1..3..2....0..1..0....0..1..0
		

Formula

Empirical: a(n) = 26*a(n-3) -280*a(n-6) +1644*a(n-9) +a(n-11) -5901*a(n-12) -23*a(n-14) +13891*a(n-15) +9*a(n-16) +218*a(n-17) -22285*a(n-18) -87*a(n-19) -1114*a(n-20) +24618*a(n-21) +235*a(n-22) +3398*a(n-23) -18372*a(n-24) -174*a(n-25) -6506*a(n-26) +8700*a(n-27) -229*a(n-28) +7928*a(n-29) -2284*a(n-30) +496*a(n-31) -5968*a(n-32) +600*a(n-33) -313*a(n-34) +2449*a(n-35) -1063*a(n-36) +38*a(n-37) -263*a(n-38) +1219*a(n-39) +40*a(n-40) -170*a(n-41) -603*a(n-42) -17*a(n-43) +50*a(n-44) +26*a(n-45) +2*a(n-46) +97*a(n-48) -36*a(n-51) +4*a(n-54) for n>60

A252566 Number of (n+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

702, 868, 4168, 25882, 498696, 11285381, 155864925, 12185963853, 945844092853, 24332552409889, 8322243636131517, 2215111350571613524, 98531704627753178786, 155638652503561131141300
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Diagonal of A252574

Examples

			Some solutions for n=4
..0..0..2..0..0..1....0..0..2..0..0..2....2..1..3..1..1..3....1..0..0..2..0..0
..2..0..0..2..0..0....3..1..2..3..2..2....2..0..0..2..0..0....0..1..0..0..2..0
..2..3..2..2..3..2....0..2..0..0..2..0....0..2..0..0..2..0....2..2..3..1..2..3
..0..0..2..0..0..1....0..0..2..0..0..1....2..2..3..2..2..3....2..0..0..2..0..0
..1..0..0..2..0..0....3..1..1..3..2..2....1..0..0..1..0..0....0..2..0..0..2..0
..2..3..2..2..3..2....0..2..0..0..2..0....0..1..0..0..1..0....1..2..3..2..1..3
		

A252568 Number of (n+2)X(2+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

843, 868, 1558, 3286, 7610, 17261, 39419, 94224, 218717, 504824, 1216914, 2842764, 6585725, 15930113, 37308440, 86581201, 209741403, 491769283, 1142254876, 2768731230, 6494985545, 15093638282, 36592496037, 85859457999, 199589766685
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Column 2 of A252574

Examples

			Some solutions for n=4
..2..2..3..1....2..2..3..2....2..0..0..1....3..2..2..3....0..0..1..0
..1..0..0..2....2..0..0..1....2..3..2..2....0..2..0..0....2..0..0..1
..0..2..0..0....0..1..0..0....0..0..2..0....0..0..1..0....2..3..2..2
..2..2..3..2....2..2..3..2....2..0..0..2....3..2..2..3....0..0..1..0
..1..0..0..1....1..0..0..2....1..3..2..1....1..1..0..0....1..0..0..2
..0..1..0..0....0..2..0..0....0..0..1..0....0..0..2..0....2..3..2..2
		

Formula

Empirical: a(n) = 41*a(n-3) -642*a(n-6) +4961*a(n-9) -21249*a(n-12) +55203*a(n-15) -94450*a(n-18) +115159*a(n-21) -104947*a(n-24) +71287*a(n-27) -34926*a(n-30) +11911*a(n-33) -2699*a(n-36) +381*a(n-39) -30*a(n-42) +a(n-45) for n>50

A252569 Number of (n+2)X(3+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

1069, 1795, 4168, 10885, 34532, 96099, 275252, 896803, 2561903, 7521424, 25021976, 72374863, 214845510, 722910315, 2103362049, 6276229910, 21234443167, 61951956820, 185297812626, 628515657355, 1835985520369, 5497328348638
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Column 3 of A252574

Examples

			Some solutions for n=4
..0..2..0..0..2....2..0..0..1..1....1..0..0..1..0....1..0..0..2..0
..1..1..3..1..2....0..2..0..0..1....0..2..0..0..2....0..1..0..0..2
..2..0..0..2..0....2..2..3..2..2....2..2..3..2..2....2..2..3..2..1
..0..2..0..0..1....2..0..0..2..0....1..0..0..2..0....2..0..0..2..0
..1..2..3..2..2....0..2..0..0..1....0..1..0..0..2....0..2..0..0..2
..2..0..0..1..0....1..2..3..1..2....2..2..3..1..2....1..1..3..2..1
		

Formula

Empirical: a(n) = 57*a(n-3) -1068*a(n-6) +8828*a(n-9) -37486*a(n-12) +91215*a(n-15) -139676*a(n-18) +143042*a(n-21) -98725*a(n-24) +44005*a(n-27) -11816*a(n-30) +1746*a(n-33) -124*a(n-36) +3*a(n-39) for n>46

A252570 Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

1694, 3441, 9051, 25882, 88844, 263046, 802760, 2655311, 7860183, 24273030, 79767276, 236117012, 730342433, 2398390660, 7098703610, 21963448780, 72127785139, 213445574577, 660482900457, 2169282202310, 6418274172794
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Column 4 of A252574

Examples

			Some solutions for n=4
..3..2..2..3..2..2....2..0..0..2..0..0....1..0..1..1..0..0....0..2..0..0..2..0
..0..2..0..0..2..0....0..1..0..0..2..0....0..1..0..0..2..0....2..2..3..1..2..3
..0..0..1..0..0..1....2..2..3..2..2..3....2..2..3..2..1..3....1..0..0..2..0..0
..3..2..2..3..2..2....1..0..0..1..0..0....2..0..0..2..0..0....0..2..0..0..2..0
..0..1..0..0..2..0....0..1..0..0..1..0....0..2..0..0..2..0....2..1..3..1..2..3
..0..0..2..0..0..1....2..2..3..2..2..3....1..1..3..1..2..3....2..0..0..2..0..0
		

Formula

Empirical: a(n) = 82*a(n-3) -2429*a(n-6) +33486*a(n-9) -261118*a(n-12) +1295078*a(n-15) -4396152*a(n-18) +10604184*a(n-21) -18276440*a(n-24) +22254797*a(n-27) -19021565*a(n-30) +11461650*a(n-33) -4926134*a(n-36) +1526628*a(n-39) -338818*a(n-42) +51264*a(n-45) -4731*a(n-48) +223*a(n-51) -4*a(n-54) for n>60

A252571 Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

2985, 8980, 30532, 107651, 498696, 1887578, 7115253, 31894631, 122743127, 470091119, 2102294795, 8141112826, 31313195196, 140219334014, 544334882366, 2096632656296, 9398676402136, 36523929959167, 140756808264359
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Column 5 of A252574

Examples

			Some solutions for n=4
..0..0..2..0..0..1..1....2..0..0..2..0..0..2....0..1..0..0..2..0..0
..2..0..0..2..0..0..1....1..3..1..2..3..1..2....2..2..3..2..1..3..1
..2..3..2..2..3..2..2....0..0..2..0..0..2..0....2..0..0..2..0..0..2
..0..0..2..0..0..2..0....2..0..0..2..0..0..2....0..2..0..0..2..0..0
..2..0..0..1..0..0..2....2..3..1..2..3..2..1....2..2..3..2..2..3..1
..1..3..2..2..3..1..2....0..0..2..0..0..2..0....1..0..0..2..0..0..2
		

Formula

Empirical: a(n) = 141*a(n-3) -7068*a(n-6) +174395*a(n-9) -2506081*a(n-12) +23429882*a(n-15) -154146596*a(n-18) +751684236*a(n-21) -2807197814*a(n-24) +8200818320*a(n-27) -19010699089*a(n-30) +35232932261*a(n-33) -52135315240*a(n-36) +60934776517*a(n-39) -55197026700*a(n-42) +37698656303*a(n-45) -18536879660*a(n-48) +5844224877*a(n-51) -584621719*a(n-54) -503336664*a(n-57) +341137814*a(n-60) -120629020*a(n-63) +28933758*a(n-66) -4962244*a(n-69) +608117*a(n-72) -51421*a(n-75) +2778*a(n-78) -83*a(n-81) +a(n-84) for n>89

A252572 Number of (n+2)X(6+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

5401, 23007, 92725, 395500, 2538669, 11285381, 53055996, 337833222, 1537313257, 7468646942, 48266349656, 221948510836, 1091522283798, 7130961567961, 32949908161991, 162858861392766, 1070100774007537, 4955450639355900
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Column 6 of A252574

Examples

			Some solutions for n=3
..2..2..3..2..2..3..2..1....0..2..0..0..2..0..0..2....3..2..1..3..1..1..0..1
..2..0..0..2..0..0..2..0....1..2..3..1..1..3..2..2....0..2..0..0..2..0..0..2
..0..2..0..0..1..0..0..2....2..0..0..2..0..0..2..0....0..0..2..0..0..2..0..0
..1..2..3..2..2..3..2..2....0..2..0..0..2..0..0..2....3..2..2..3..1..2..3..2
..2..0..0..1..0..0..2..0....1..2..3..2..1..3..1..1....0..2..0..0..2..0..0..2
		

A252573 Number of (n+2) X (7+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

9936, 47737, 208375, 959944, 6590930, 31059674, 155864925, 994640586, 4728064653, 24277561799, 152128655769, 724041200896, 3737920882959, 23334351446462, 111056940261198, 574039942229995, 3581491498190689
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Column 7 of A252574.

Examples

			Some solutions for n=2
..2..3..2..2..3..1..2..3..1....2..3..2..2..3..2..2..3..2
..0..0..1..0..0..2..0..0..2....0..0..2..0..0..1..0..0..2
..2..0..0..2..0..0..2..0..0....2..0..0..2..0..0..2..0..0
..2..3..2..2..3..1..2..3..2....2..3..2..2..3..2..2..3..1
		

Crossrefs

Cf. A252574.

A252575 Number of (1+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

702, 843, 1069, 1694, 2985, 5401, 9936, 18972, 36144, 68328, 132259, 254014, 483085, 937293, 1802438, 3435781, 6666327, 12816791, 24467952, 47451918, 91181264, 174286544, 337798170, 648685210, 1241316959, 2404367968, 4614248202
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Row 1 of A252574

Examples

			Some solutions for n=4
..1..3..2..1..3..2....3..1..1..0..0..1....2..3..2..2..3..2....2..2..2..3..0..3
..0..0..2..0..0..1....3..1..2..2..1..2....0..0..1..0..0..2....1..1..0..1..1..3
..2..0..0..2..0..0....2..2..1..2..2..1....2..0..0..2..0..0....0..0..2..0..3..2
		

Formula

Empirical: a(n) = 25*a(n-3) +a(n-4) -239*a(n-6) -23*a(n-7) +1103*a(n-9) +192*a(n-10) -2670*a(n-12) -696*a(n-13) +3918*a(n-15) +1086*a(n-16) -4034*a(n-18) -1050*a(n-19) +3218*a(n-21) +848*a(n-22) -1969*a(n-24) -472*a(n-25) +889*a(n-27) +177*a(n-28) -303*a(n-30) -63*a(n-31) +63*a(n-33) for n>43

A252576 Number of (2+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 5 6 or 7.

Original entry on oeis.org

742, 868, 1795, 3441, 8980, 23007, 47737, 133142, 358343, 747913, 2133162, 5930143, 12407892, 35927539, 102193578, 214180250, 626625460, 1809891284, 3797310562, 11184658108, 32620331477, 68486288857, 202566746459, 594329457551
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2014

Keywords

Comments

Row 2 of A252574

Examples

			Some solutions for n=4
..2..0..0..1..0..1....2..0..0..1..1..0....0..0..1..1..0..1....3..1..2..3..2..2
..1..3..2..2..3..2....0..1..0..0..1..1....1..0..0..1..0..1....0..2..0..0..2..0
..1..0..1..0..0..1....2..2..3..2..2..3....2..3..2..2..3..1....0..0..2..0..0..1
..1..0..0..2..0..0....2..0..0..1..0..0....1..0..1..0..0..1....3..2..1..3..1..2
		

Formula

Empirical: a(n) = 42*a(n-3) -595*a(n-6) +3251*a(n-9) -5703*a(n-12) +8191*a(n-15) -8486*a(n-18) +5741*a(n-21) -3340*a(n-24) +900*a(n-27) for n>34
Showing 1-10 of 15 results. Next