This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252593 #24 Oct 01 2021 18:07:52 %S A252593 0,0,0,0,0,0,0,92,13848,636524,14803480,207667564,2008758532, %T A252593 14752426528,87154016752,432539436508,1858901487620 %N A252593 Number of ways to place 8 nonattacking queens on an n X n board. %C A252593 Conjectured recurrence order is 477 (see "Non-attacking chess pieces", p. 19). - _Vaclav Kotesovec_, Dec 19 2014 %H A252593 S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, <a href="http://arxiv.org/abs/1303.1879">A q-Queens Problem, I. General theory</a>, arXiv:1303.1879 [math.CO], 2013-2014. %H A252593 V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013 %H A252593 Antal Pinter, <a href="http://pinter.netii.net/comb.htm">Combinatorics</a>, software for enumerating positions of non-attacking chess pieces. %H A252593 I. Rivin, I. Vardi and P. Zimmermann, <a href="http://www.jstor.org/stable/2974691">The n-queens problem</a>, Amer. Math. Monthly, 101 (1994), 629-639. %F A252593 a(n) = n^16/40320 - n^15/432 + 221*n^14/2160 + O(n^13). - _Vaclav Kotesovec_, Dec 19 2014 %Y A252593 Cf. A000170, A036464, A047659, A061994, A108792, A176186, A178721. %Y A252593 Column k=8 of A348129. %K A252593 nonn,hard,more %O A252593 1,8 %A A252593 _Antal Pinter_, Dec 18 2014 %E A252593 a(16) from _Vaclav Kotesovec_, Dec 19 2014 %E A252593 a(17) from _Vaclav Kotesovec_, Dec 20 2014