cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252594 Records in A072994.

Original entry on oeis.org

1, 2, 8, 16, 27, 32, 54, 64, 100, 128, 200, 243, 256, 400, 486, 500, 512, 800, 972, 1000, 1024, 1600, 1944, 2000, 2048, 3200, 3888, 4000, 4096, 4624, 6400, 7776, 8000, 8192, 9248, 12100, 12500, 12800, 15552, 16000, 16384, 18496, 24200, 25000, 25600, 31104, 32000, 32768, 36992, 48400, 50000
Offset: 1

Views

Author

Robert G. Wilson v, Dec 18 2014

Keywords

Comments

Consider the function f(n) = the number of positive integers k < n such that k^n (mod n) == 1. This sequence lists the values of n at which f(n) reaches a new maximum.
All powers of two are present except its square. f(2^n) (with exception noted) = 2^(n-1) = 2^n/2.
All powers of two multiplied by 100, 1000 and 100000, but not 10000, are also present.
Terms other than the above are 27, 54, 243, 486, 500, 972, 1944, 3888, 4624, 7776, 9248, 12100, 12500, 15552, 18496, 24200, 25000, 31104, 36992, 48400, 50000, ..., .
Conjecture: f(x)/x -> 5/12.

Crossrefs

Cf. A072994.

Programs

  • Mathematica
    f[n_] := (d = If[ OddQ@ n, 1, 2];   d*Length@ Select[ Range[ n/d], PowerMod[#, n, n] == 1 &]); f[1] = 1; k = 1; mx = 0; lst = {}; While[k < 10000001, a = f@ k; If[a > mx, mx = a; AppendTo[lst, k]; Print[{a, k}]]; k++]; lst