This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252652 #22 Oct 25 2023 20:33:38 %S A252652 0,7,12,22,107,264,812,4919,12154,24612,75705,101805,236441,1946174 %N A252652 a(n) is the smallest nonnegative integer such that a(n)! contains a string of exactly n consecutive 0's, not including trailing 0's. %e A252652 a(0) = 0 since 0! = 1, which does not contain a 0. %e A252652 a(1) = 7 since 7! = 5040, which contains a 0 other than the trailing 0, and no integer smaller than 7 satisfies this requirement. (a(1) is not 5; 5! = 120, which has no 0 digits other than the trailing 0.) %e A252652 a(2) = 12 since 12! = 479001600; discarding the trailing 0's leaves 4790016, which contains a string of exactly two consecutive 0's, and no integer smaller than 12 satisfies this requirement. %t A252652 A252652[n_] := Module[{m = 0, s, t}, %t A252652 If[n == 0, While[MemberQ[IntegerDigits[m!], 0], m++]; m, %t A252652 t = Table[0, n]; %t A252652 While[s = Split[IntegerDigits[m!]]; %t A252652 If[MemberQ[Last[s], 0], s = Delete[s, -1]]; ! MemberQ[s, t], %t A252652 m++]; m]]; %t A252652 Table[A252652[n], {n, 0, 13}] (* _Robert Price_, Mar 21 2019 *) %o A252652 (Python) %o A252652 import re %o A252652 def A252652(n): %o A252652 if n == 0: %o A252652 return 0 %o A252652 f, i, s = 1, 0, re.compile('[0-9]*[1-9]0{'+str(n)+'}[1-9][0-9]*') %o A252652 while s.match(str(f)) == None: %o A252652 i += 1 %o A252652 f *= i %o A252652 return i # _Chai Wah Wu_, Dec 29 2015 %o A252652 (PARI) f(k, sz, sz1) = my(f=k!, s=Str(f/10^valuation(f, 10))); #strsplit(s, sz) - #strsplit(s, sz1); %o A252652 a(n) = if (n==0, return(0)); my(sz=concat(vector(n, k, "0")), sz1=concat(sz, "0"), k=1); while (f(k, sz, sz1) != 1, k++); k; \\ _Michel Marcus_, Oct 25 2023 %Y A252652 Cf. A254042, A254447, A254448, A254449, A254500, A254501, A254502, A254716, A254717. %K A252652 nonn,base,more %O A252652 0,2 %A A252652 _Jon E. Schoenfield_, Mar 22 2015, at the suggestion of _Martin Y. Champel_ %E A252652 a(13) from _Lars Blomberg_, Apr 05 2015