This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252660 #14 Sep 08 2022 08:46:10 %S A252660 1,20,26,32,54,162,204 %N A252660 Numbers k such that 7^k - k is a semiprime. %C A252660 From _Robert Israel_, Sep 02 2016: (Start) %C A252660 Odd k is in the sequence iff (7^k-k)/2 is prime. %C A252660 If k == 1 (mod 3) then k is in the sequence iff (7^k-k)/3 is prime. %C A252660 708 is in the sequence but is not necessarily a(7). (End) %C A252660 a(8) >= 384. - _Daniel Suteu_, Aug 05 2019 %e A252660 1 is in this sequence because 7^1-1 = 2*3 is semiprime. %e A252660 20 is in this sequence because 7^20-20 = 1511201*52800564781 and these two factors are prime. %p A252660 Res:= NULL: %p A252660 for n from 1 to 100 do %p A252660 F:= ifactors(7^n-n,easy)[2]; %p A252660 if add(t[2],t=F) >= 3 or (hastype(F,symbol) and add(t[2],t=F) >= 2) %p A252660 then flag:= false %p A252660 elif add(t[2],t=F) = 2 and not hastype(F,symbol) then flag:= true %p A252660 else %p A252660 flag:= evalb(numtheory:-bigomega(7^n-n)=2) %p A252660 fi; %p A252660 if flag then Res:= Res, n fi %p A252660 od: %p A252660 Res; # _Robert Israel_, Sep 02 2016 %t A252660 Select[Range[80], PrimeOmega[7^# - #]==2 &] %o A252660 (Magma) IsSemiprime:=func<i | &+[d[2]: d in Factorization(i)] eq 2>; [m: m in [1..80] | IsSemiprime(s) where s is 7^m-m]; %Y A252660 Cf. similar sequences listed in A252656. %K A252660 nonn,more %O A252660 1,2 %A A252660 _Vincenzo Librandi_, Dec 21 2014 %E A252660 a(6) from _Robert Israel_, Sep 02 2016 %E A252660 a(7) from _Daniel Suteu_, Aug 05 2019