This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252664 #42 May 22 2025 10:21:41 %S A252664 101,202,141,212,505,252,161,232,171,1010,121,252,494,252,525,272,272, %T A252664 252,171,2020,252,242,161,696,525,494,2727,252,232,3030,434,3232,363, %U A252664 272,525,252,3737,494,585,4040,656,252,989,484,585,414,141,4848,343,5050 %N A252664 Minimal nontrivial undulant (A046075) divisible by n, or 0 if no undulant is divisible by n. %C A252664 Undulants are numbers are of the form ababab..... with a and b distinct digits (base 10, a nonzero). An undulate is nontrivial if it has at least 3 digits. - _Danny Rorabaugh_, Apr 22 2015 %H A252664 Reiner Moewald, <a href="/A252664/b252664.txt">Table of n, a(n) for n = 1..499</a> %e A252664 505 is the least entry of A046075 that is divisible by 5, so a(5) = 505. Since an undulant cannot end in 00, a(100)=0. - _Danny Rorabaugh_, Apr 22 2015 %o A252664 (Python) %o A252664 feld = [] %o A252664 for n in range(3, 500): %o A252664 for a in range(1, 10): %o A252664 for b in range(10): %o A252664 if a != b: %o A252664 z_string = "" %o A252664 for pos in range(n): %o A252664 if pos % 2 == 0: %o A252664 z_string = z_string + str(a) %o A252664 else: %o A252664 z_string = z_string + str(b) %o A252664 z = int(z_string) %o A252664 feld.append(z) %o A252664 feld_length = len(feld) %o A252664 for z in range (1, 150): %o A252664 start = 0 %o A252664 while start < feld_length and feld[start] % z != 0: %o A252664 start = start + 1 %o A252664 if start < feld_length: %o A252664 print(z, feld[start]) %Y A252664 Cf. A046075. %K A252664 nonn,base %O A252664 1,1 %A A252664 _Reiner Moewald_, Mar 22 2015