This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252670 #23 Oct 15 2019 11:47:41 %S A252670 22,0,11,4,2,0,0,2,1,0,0,2,2,0,0,0,0,2,0,2,2,0,0,0,0,2,0,0,2,1,2,1,0, %T A252670 0,0,0,0,2,0,0,1,2,0,0,0,0,2,0,0,1,0,0,3,1,0,0,0,2,0,0,0,0,2,1,2,0,0, %U A252670 0,0,0,0,0,0,0,0,3,1,0,1,0,0,5,0,2,0,0,1,0,0,0 %N A252670 a(n) is exponential digital index of prime(n). %C A252670 For the definition of the exponential digital index of a prime p (EDI(p)), see comment in A252668. %C A252670 Is 22 the maximal term? Is 11 the second maximal term? %F A252670 a(n)=0, iff n is not in A251964; a(n)=1, iff n is in A251964, but is not A252280; %F A252670 a(n)=2, iff n is in A251964 & A252980, but is not in A252981, a(n)>=3, iff n is in A251964 & A252980 & A252281. %o A252670 (PARI) s(k, pp) = my(sd = sumdigits(pp^k)); sd/2^valuation(sd, 2); %o A252670 f(n, pp) = {my(p = prime(n), k = 1); while ((sk=s(k, pp)) % p, k++); if (sk == p, k, 0); } %o A252670 a(n) = {my(pp=prime(n), j=3); while (f(j,pp), j++); j - 3;} \\ _Michel Marcus_, Dec 09 2018 %Y A252670 Cf. A000040, A251964, A252280, A252281, A252282, A252283, A252666, A252668. %K A252670 nonn,base %O A252670 1,1 %A A252670 _Vladimir Shevelev_, Dec 20 2014 %E A252670 More terms from _Michel Marcus_, Dec 09 2018