This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252696 #32 Jun 11 2019 03:12:13 %S A252696 0,3,6,12,30,78,222,636,1878,5556,16590,49548,148422,444630,1333254, %T A252696 3997884,11991774,35969766,107903742,323694636,971067318,2913152406, %U A252696 8739407670,26218074588,78654075342,235961781396,707884899558,2123653365420,6370958763006 %N A252696 Number of strings of length n over a 3-letter alphabet that do not begin with a nontrivial palindrome. %C A252696 A nontrivial palindrome is of length at least 2. %C A252696 3 divides a(n) for all n. %C A252696 lim n -> infinity a(n)/3^n ~ 0.278489919882115 is the probability that a random, infinite string over a 3-letter alphabet does not begin with a palindrome. %C A252696 This sequence gives the number of walks on K_3 with loops that do not begin with a palindromic sequence. %H A252696 Peter Kagey, <a href="/A252696/b252696.txt">Table of n, a(n) for n = 0..1000</a> %H A252696 Daniel Gabric, Jeffrey Shallit, <a href="https://arxiv.org/abs/1906.03689">Borders, Palindrome Prefixes, and Square Prefixes</a>, arXiv:1906.03689 [cs.DM], 2019. %F A252696 a(n) = 3^n - A248122(n) for n > 0. %F A252696 a(2n) = k*a(2n-1) - a(n) for n >= 1; a(2n+1) = k*a(2n) - a(n+1) for n >= 1. - _Jeffrey Shallit_, Jun 09 2019 %e A252696 For n = 3, the first 10 of the a(3) = 12 solutions are (in lexicographic order) 011, 012, 021, 022, 100, 102, 120, 122, 200, 201. %t A252696 b[0] = 0; b[1] = 0; b[n_] := b[n] = 3*b[n-1] + 3^Ceiling[n/2] - b[Ceiling[n/2]]; a[n_] := 3^n - b[n]; a[0] = 0; Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Jan 19 2015 *) %o A252696 (Ruby) seq = [1, 0]; (2..N).each { |i| seq << 3 * seq[i-1] + 3**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 3**i - a } %Y A252696 A248122 gives the number of strings of length n over a 3 letter alphabet that DO begin with a palindrome. %Y A252696 Analogous sequences for k-letter alphabets: A252697 (k=4), A252698 (k=5), A252699 (k=6), A252700 (k=7), A252701 (k=8), A252702 (k=9), A252703 (k=10). %K A252696 easy,nonn,walk %O A252696 0,2 %A A252696 _Peter Kagey_, Dec 20 2014