cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252697 Number of strings of length n over a 4-letter alphabet that do not begin with a palindrome.

Original entry on oeis.org

0, 4, 12, 36, 132, 492, 1932, 7596, 30252, 120516, 481572, 1924356, 7695492, 30774372, 123089892, 492329316, 1969287012, 7877027532, 31507989612, 126031476876, 504125425932, 2016499779372, 8065997193132, 32263981077036, 129055916612652, 516223635676236
Offset: 0

Views

Author

Peter Kagey, Dec 20 2014

Keywords

Comments

4 divides a(n) for all n.
lim n -> infinity a(n)/4^n ~ 0.458498674725575 is the probability that a random, infinite string over a 4-letter alphabet does not begin with a palindrome.
This sequence gives the number of walks on K_4 with loops that do not begin with a palindromic sequence.

Examples

			For n = 3, the first 10 of the a(3) = 36 solutions are (in lexicographic order) 011, 012, 013, 021, 022, 023, 031, 032, 033, 100.
		

Crossrefs

A249629 gives the number of strings of length n over a 4-letter alphabet that DO begin with a palindrome.
Analogous sequences for k-letter alphabets: A252696 (k=3), A252698 (k=5), A252699 (k=6), A252700 (k=7), A252701 (k=8), A252702 (k=9), A252703 (k=10).

Programs

  • Ruby
    seq = [1, 0]; (2..N).each { |i| seq << 4 * seq[i-1] + 4**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 4**i - a }

Formula

a(n) = 4^n - A249629(n) for n > 0.