A252700 Number of strings of length n over a 7-letter alphabet that do not begin with a palindrome.
0, 7, 42, 252, 1722, 11802, 82362, 574812, 4021962, 28141932, 196981722, 1378789692, 9651445482, 67559543562, 472916230122, 3310409588892, 23172863100282, 162210013560042, 1135470066778362, 7948290270466812, 55638031696285962, 389466220495212042
Offset: 0
Examples
For n = 3, the first 10 of the a(3) = 252 solutions are (in lexicographic order) 011, 012, 013, 014, 015, 016, 021, 022, 023, 024.
Links
- Peter Kagey, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
a252700[n_] := Block[{f}, f[0] = f[1] = 0; f[x_] := 7*f[x - 1] + 7^Ceiling[(x)/2] - f[Ceiling[(x)/2]]; Prepend[Rest@Table[7^i - f[i], {i, 0, n}], 0]]; a252700[21] (* Michael De Vlieger, Dec 26 2014 *)
-
Ruby
seq = [1, 0]; (2..N).each { |i| seq << 7 * seq[i-1] + 7**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 7**i - a }
Formula
a(n) = 7^n - A249640(n) for n > 0.
Comments