A252701 Number of strings of length n over an 8-letter alphabet that do not begin with a palindrome.
0, 8, 56, 392, 3080, 24248, 193592, 1545656, 12362168, 98873096, 790960520, 6327490568, 50619730952, 404956301960, 3239648870024, 25917178598024, 207337416422024, 1658699232503096, 13269593761151672, 106156749298252856, 849253993595062328, 6794031942433008056
Offset: 0
Examples
For n = 3, the first 10 of the a(3) = 392 solutions are (in lexicographic order) 011, 012, 013, 014, 015, 016, 017, 021, 022, 023.
Links
- Peter Kagey, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
a252701[n_] := Block[{f}, f[0] = f[1] = 0; f[x_] := 8*f[x - 1] + 8^Ceiling[(x)/2] - f[Ceiling[(x)/2]]; Prepend[Rest@Table[8^i - f[i], {i, 0, n}], 0]]; a252701[21] (* Michael De Vlieger, Dec 26 2014 *)
-
Ruby
seq = [1, 0]; (2..N).each { |i| seq << 8 * seq[i-1] + 8**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 8**i - a }
Formula
a(n) = 8^n - A249641(n) for n > 0.
Comments