cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252703 Number of strings of length n over a 10-letter alphabet that do not begin with a palindrome.

Original entry on oeis.org

0, 10, 90, 810, 8010, 79290, 792090, 7912890, 79120890, 791129610, 7911216810, 79111376010, 791112968010, 7911121767210, 79111209759210, 791112018471210, 7911120105591210, 79111200264782490, 791112001856695290, 7911120010655736090, 79111200098646144090
Offset: 0

Views

Author

Peter Kagey, Dec 20 2014

Keywords

Comments

10 divides a(n) for all n.
lim n -> infinity a(n)/10^n ~ 0.79111200088977 is the probability that a random, infinite string over a 10-letter alphabet does not begin with a palindrome.
This sequence gives the number of walks on K_10 with loops that do not begin with a palindromic sequence.

Examples

			For n = 3, the first 20 of the a(3) = 810 solutions are (in lexicographic order) 011, 012, 013, 014, 015, 016, 017, 018, 019, 021, 022, 023, 024, 025, 026, 027, 028, 029, 031, 032.
		

Crossrefs

A249643 gives the number of strings of length n over a 10-letter alphabet that DO begin with a palindrome.
Analogous sequences for k-letter alphabets: A252696 (k=3), A252697 (k=4), A252698 (k=5), A252699 (k=6), A252700 (k=7), A252701 (k=8), A252702 (k=9).

Programs

  • Mathematica
    a252703[n_] := Block[{f},
      f[0] = f[1] = 0;
      f[x_] := 10*f[x - 1] + 10^Ceiling[(x)/2] - f[Ceiling[(x)/2]];
    Prepend[Rest@Table[10^i - f[i], {i, 0, n}],0]]; a252703[20] (* Michael De Vlieger, Dec 26 2014 *)
  • Ruby
    seq = [1, 0]; (2..N).each { |i| seq << 10 * seq[i-1] + 10**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 10**i - a }

Formula

a(n) = 10^n - A249643(n) for n > 0.