A252747 Numbers n such that the hexagonal number H(n) is equal to the sum of four consecutive squares.
18, 42, 602, 1418, 20442, 48162, 694418, 1636082, 23589762, 55578618, 801357482, 1888036922, 27222564618, 64137676722, 924765839522, 2178792971618, 31414815979122, 74014823358282, 1067178977450618, 2514325201209962, 36252670417341882, 85413042017780418
Offset: 1
Examples
18 is in the sequence because H(18) = 630 = 121+144+169+196 = 11^2+12^2+13^2+14^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Programs
-
PARI
Vec(-2*x*(x^4-26*x^2+12*x+9)/((x-1)*(x^2-6*x+1)*(x^2+6*x+1)) + O(x^100))
Formula
a(n) = a(n-1)+34*a(n-2)-34*a(n-3)-a(n-4)+a(n-5).
G.f.: -2*x*(x^4-26*x^2+12*x+9) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)).
Comments