This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252755 #24 Dec 10 2019 12:09:47 %S A252755 1,2,4,3,8,9,6,5,16,21,18,25,12,15,10,7,32,45,42,55,36,51,50,49,24,33, %T A252755 30,35,20,27,14,11,64,93,90,115,84,123,110,91,72,105,102,125,100,147, %U A252755 98,121,48,69,66,85,60,87,70,77,40,57,54,65,28,39,22,13,128,189,186,235,180,267,230,203,168,249,246,305,220,327,182,187,144 %N A252755 Tree of Eratosthenes, mirrored: a(0) = 1, a(1) = 2; after which, a(2n) = 2*a(n), a(2n+1) = A250469(a(n)). %C A252755 This sequence can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A250469 to the parent: %C A252755 1 %C A252755 | %C A252755 ...................2................... %C A252755 4 3 %C A252755 8......../ \........9 6......../ \........5 %C A252755 / \ / \ / \ / \ %C A252755 / \ / \ / \ / \ %C A252755 / \ / \ / \ / \ %C A252755 16 21 18 25 12 15 10 7 %C A252755 32 45 42 55 36 51 50 49 24 33 30 35 20 27 14 11 %C A252755 etc. %C A252755 Sequence A252753 is the mirror image of the same tree. A253555(n) gives the distance of n from 1 in both trees. %H A252755 Antti Karttunen, <a href="/A252755/b252755.txt">Table of n, a(n) for n = 0..8192</a> %H A252755 Antti Karttunen, <a href="/A135141/a135141.pdf">Entanglement Permutations</a>, 2016-2017 %H A252755 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A252755 a(0) = 1, a(1) = 2; after which, a(2n) = 2*a(n), a(2n+1) = A250469(a(n)). %F A252755 As a composition of related permutations: %F A252755 a(n) = A252753(A054429(n)). %F A252755 a(n) = A250245(A163511(n)). %t A252755 (* b = A250469 *) b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1 + 2 == k2, Return[m2]]]]; %t A252755 a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], 2 a[n/2], b[a[(n-1)/2]]]; %t A252755 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Mar 08 2016 *) %o A252755 (Scheme, with memoization-macro definec) %o A252755 (definec (A252755 n) (cond ((<= n 1) (+ n 1)) ((even? n) (* 2 (A252755 (/ n 2)))) (else (A250469 (A252755 (/ (- n 1) 2)))))) %Y A252755 Inverse: A252756. %Y A252755 Row sums: A253787, products: A253788. %Y A252755 Similar permutations: A163511, A252753, A054429, A163511, A250245, A269865. %Y A252755 Cf. also: A249814 (Compare the scatterplots). %Y A252755 Cf. A083221, A250469, A253555. %K A252755 nonn,tabf,look %O A252755 0,2 %A A252755 _Antti Karttunen_, Jan 02 2015