This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252764 #12 Jan 25 2018 11:49:37 %S A252764 1,2,24,240,3120,46410,823536,16773120,387419760,9999899910, %T A252764 285311670600,8916097441680,302875106592240,11112006720144330, %U A252764 437893890380096640,18446744069414584320,827240261886336764160,39346408075098144278664,1978419655660313589123960 %N A252764 Number of length n primitive (=aperiodic or period n) n-ary words. %H A252764 Alois P. Heinz, <a href="/A252764/b252764.txt">Table of n, a(n) for n = 1..350</a> %F A252764 a(n) = Sum_{d|n} n^d * mu(n/d), mu = A008683. %F A252764 a(n) = A075147(n)*n. %F A252764 a(n) = A074650(n,n) * n. %F A252764 a(n) = A143325(n,n) * n. %F A252764 a(n) = A143324(n,n). %e A252764 a(3) = 24 because there are 24 primitive words of length 3 over 3-letter alphabet {a,b,c}: aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb. %p A252764 with(numtheory): %p A252764 a:= n-> add(n^d *mobius(n/d), d=divisors(n)): %p A252764 seq(a(n), n=1..25); %t A252764 a[n_] := DivisorSum[n, n^# * MoebiusMu[n/#]& ]; %t A252764 Array[a, 25] (* _Jean-François Alcover_, Mar 24 2017, translated from Maple *) %Y A252764 Main diagonal of A143324. %Y A252764 Cf. A008683, A074650, A075147, A143324, A143325. %K A252764 nonn %O A252764 1,2 %A A252764 _Alois P. Heinz_, Dec 21 2014