This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252798 #17 Feb 16 2025 08:33:24 %S A252798 4,0,0,0,7,8,5,2,3,0,9,0,7,6,8,2,0,2,2,8,5,0,1,4,5,1,5,2,6,0,3,0,4,5, %T A252798 5,7,9,2,3,0,3,8,6,3,0,8,2,8,4,1,7,5,9,8,5,9,5,3,3,2,7,0,6,2,1,9,0,9, %U A252798 3,8,8,9,0,3,7,1,4,6,0,9,2,0,9,0,7,5,2,9,6,6,9,9,4,6,0,2,9,9,0,2,6,9,5,6,5 %N A252798 Decimal expansion of G(1/3) where G is the Barnes G-function. %H A252798 V. S. Adamchik, <a href="http://arxiv.org/abs/math/0308086">Contributions to the Theory of the Barnes function</a>, arXiv:math/0308086 [math.CA], 2003. %H A252798 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>. %H A252798 Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>. %F A252798 (3^(1/72)*e^(1/9 + (2*Pi^2 - 3*PolyGamma(1, 1/3))/(36*sqrt(3)*Pi)))/(A^(4/3)*Gamma(1/3)^(2/3)), where PolyGamma(1, .) is the derivative of the digamma function and A the Glaisher-Kinkelin constant (A074962). %F A252798 G(1/3) * G(2/3) = A252798 * A252799 = 3^(7/36) * exp(2/9) / (A^(8/3) * 2^(1/3) * Pi^(1/3) * Gamma(1/3)^(1/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Mar 01 2015 %e A252798 0.4000785230907682022850145152603045579230386308284... %t A252798 RealDigits[BarnesG[1/3], 10, 105] // First %Y A252798 Cf. A074962, A087013, A087014, A087015, A087016, A087017, A252799. %K A252798 nonn,cons,easy %O A252798 0,1 %A A252798 _Jean-François Alcover_, Dec 22 2014