A252814 Number of n X 2 nonnegative integer arrays with upper left 0 and every value within 2 of its city block distance from the upper left and every value increasing by 0 or 1 with every step right or down.
2, 6, 17, 40, 81, 147, 246, 387, 580, 836, 1167, 1586, 2107, 2745, 3516, 4437, 5526, 6802, 8285, 9996, 11957, 14191, 16722, 19575, 22776, 26352, 30331, 34742, 39615, 44981, 50872, 57321, 64362, 72030, 80361, 89392, 99161, 109707, 121070, 133291
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..1....0..1....0..1....0..1....0..1....0..1....0..0....0..0....0..1 ..0..1....0..1....1..2....1..2....0..1....0..1....1..2....1..1....1..1....1..2 ..1..1....1..1....2..3....2..3....1..2....1..1....2..2....1..2....2..2....2..2 ..2..2....1..2....2..3....3..4....2..2....2..2....3..3....1..2....2..3....2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- W. Kuszmaul, Fast Algorithms for Finding Pattern Avoiders and Counting Pattern Occurrences in Permutations, arXiv preprint arXiv:1509.08216 [cs.DM], 2015-2017.
Crossrefs
Column 2 of A252820.
Formula
Empirical: a(n) = (1/24)*n^4 + (5/12)*n^3 - (1/24)*n^2 + (7/12)*n + 1.
Conjectures from Colin Barker, Dec 06 2018: (Start)
G.f.: x*(2 - 4*x + 7*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)