A252817 Number of n X 5 nonnegative integer arrays with upper left 0 and every value within 2 of its city block distance from the upper left and every value increasing by 0 or 1 with every step right or down.
11, 81, 468, 2078, 7564, 23664, 65711, 165685, 385736, 839799, 1726761, 3379640, 6336411, 11439478, 19972358, 33843927, 55832593, 89905021, 141626554, 218683266, 331538662, 494251420, 725484265, 1049738089, 1498849798
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1..2..3....0..1..2..3..3....0..1..1..2..3....0..0..1..2..3 ..1..2..2..3..3....1..2..2..3..4....1..1..2..3..4....1..1..2..3..4 ..2..3..3..4..4....2..2..2..3..4....1..2..3..4..4....1..2..2..3..4 ..2..3..4..5..5....2..2..3..4..5....2..3..3..4..5....1..2..3..4..5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A252820.
Formula
Empirical: a(n) = (1/259200)*n^10 + (1/6480)*n^9 + (149/60480)*n^8 + (163/7560)*n^7 + (10411/86400)*n^6 + (209/432)*n^5 + (17977/12960)*n^4 + (6043/3240)*n^3 + (37673/12600)*n^2 + (1423/1260)*n + 3.
Conjectures from Colin Barker, Dec 06 2018: (Start)
G.f.: x*(11 - 40*x + 182*x^2 - 430*x^3 + 711*x^4 - 822*x^5 + 657*x^6 - 360*x^7 + 131*x^8 - 29*x^9 + 3*x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)