cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252823 Number of n X 3 nonnegative integer arrays with upper left 0 and every value within 3 of its city block distance from the upper left and every value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

4, 18, 81, 340, 1238, 3891, 10761, 26764, 60988, 129236, 257653, 487744, 883142, 1538541, 2591269, 4236040, 6743492, 10483190, 15951849, 23807612, 34911302, 50375655, 71623633, 100457012, 139136540, 190475064, 257945133, 345802696
Offset: 1

Views

Author

R. H. Hardin, Dec 22 2014

Keywords

Examples

			Some solutions for n=4:
..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..0....0..0..1
..0..1..1....1..1..2....0..1..2....1..1..2....0..1..1....0..0..0....0..0..1
..1..2..2....2..2..3....1..1..2....2..2..3....0..1..2....0..0..1....1..1..2
..2..2..3....3..3..4....1..1..2....2..3..3....1..2..3....0..1..2....1..2..3
		

Crossrefs

Column 3 of A252828.

Formula

Empirical: a(n) = (1/90720)*n^9 + (1/2520)*n^8 + (19/3780)*n^7 + (1/45)*n^6 + (157/4320)*n^5 + (31/180)*n^4 + (28507/45360)*n^3 + (769/2520)*n^2 + (1783/630)*n.
Conjectures from Colin Barker, Dec 06 2018: (Start)
G.f.: x*(4 - 22*x + 81*x^2 - 140*x^3 + 163*x^4 - 137*x^5 + 75*x^6 - 23*x^7 + 3*x^8) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)